[1] YANG Y, DENG Y Y, HUANG J Y, et al. Size- transformable metal-organic framework-derived nanocarbons for localized chemo-photothermal bacterial ablation and wound disinfection[J]. Advanced Functional Materials,2019,29(33):1900143:1-14. [2] WU B Y, FU J T, ZHOU Y X, et al. Metal-organic framework-based chemo-photothermal combinational system for precise, rapid, and efficient antibacterial therapeutics[J]. Pharmaceutics,2019,11(9):463:1-15. [3] JIANG Q, E F J, TIAN J X, et al. Light-excited antibiotics for potentiating bacterial killing via reactive oxygen species generation[J]. ACS Applied Materials Interfaces, 2020, 12(14): 16150-16158. [4] LAKHUNDI S, ZHANG K Y. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology[J]. Clinical Microbiology Reviews, 2018, 31(4): e0002018. [5] PAPADOPOULOS P, PAPADOPOULOS T, ANGELIDIS A S, et al. Prevalence of Staphylococcus aureus and of methicillin-resistant S. aureus (MRSA) along the production chain of dairy products in north-western Greece [J]. Food Microbiol,2018, 69: 43-50. [6] TURNER N A, SHARMA-KUINKEL B K, MASKARINEC S A, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research[J]. Nature Reviews Microbiology,2019, 17(4): 203-218. [7] LIU X Y, MA L L, CHEN F, et al. Synergistic antibacterial mechanism of Bi2Te3 nanoparticles combined with the ineffective beta-lactam antibiotic cefotaxime against methicillin-resistant Staphylococcus aureus[J]. Journal of Inorganic Biochemistry,2019, 196: 110687. [8] RAFIQUE M, SADAF I, RAFIQUE M S, et al. A review on green synthesis of silver nanoparticles and their applications[J]. Artificial Cells, Nanomedicine, and Biotechnolog, 2017, 45(7): 1272-1291. [9] ZARE B, NAMI M, SHAHVERDI A R. Tracing tellurium and its nanostructures in biology[J]. Biological Trace Element Research, 2017, 180(2): 171-181. [10] CUNHA R L O R, GOUVEA I E, JULIANO L. A glimpse on biological activities of tellurium compounds[J]. Annals of the Brazilian Academy of Sciences,2009, 81(3): 393-407. [11] SATYA GOPAL RAO P, SIRIPURAM R, SRIPADA S. Impedance analysis of TeO2-SeO2-Li2O nano glass system[J]. Results in Physics, 2019, 13:102133: 1-13. [12] CHOI M S, MIRZAEI A, BANG J H, et al. Incorporation of Pt nanoparticles on the surface of TeO2- branched porous Si nanowire structures for enhanced room-temperature gas sensing[J]. Journal of Nanoscience and Nanotechnology,2019,19(10):6647-6655. [13] CHENG Y R, YANG F, XIANG G L, et al. Ultrathin tellurium oxide/ammonium tungsten bronze nanoribbon for multimodality imaging and second near-infrared region photothermal therapy[J]. Nano Letters, 2019, 19(2): 1179-1189. [14] ZHONG C L, QIN B Y, XIE X Y, et al. Antioxidant and antimicrobial activity of tellurium dioxide nanoparticles sols[J]. Journal of Nano Research,2013, 25: 8-15. [15] QIN B Y, BAI Y, ZHOU Y H, et al. Structure and characterization of TeO2 nanoparticles prepared in acid medium[J]. Materials Letters,2009,63(22): 1949- 1951. [16] PARK S, AN S, KO H, et al. Enhanced ethanol sensing properties of TeO2 nanorods functionalized with Co3O4 nanoparticles[J]. Journal of Nanoscience and Nanotechnology,2015, 15(1): 439-444. [17] VASILEIADIS T, DRACOPOULOS V, KOLLIA M, et al. Laser-assisted growth of t-Te nanotubes and their controlled photo-induced unzipping to ultrathin core-Te/sheath-TeO2 nanowires[J]. Scientific Reports,2013, 3(1): 1209:1-7. [18] NIE P, XU G Y, JIANG J M, et al. Aerosol-spray pyrolysis toward preparation of nanostructured materials for batteries and supercapacitors[J]. Small Methods,2018, 2(2): 1700272:1-24. [19] 姜兴茂, 李亚情, 张涛. 纳米二氧化硅的制备及在生物医学领域的应用[J]. 常州大学学报, 2015, 27(2):39-44. [20] LIANG D H, LU Z, YANG H, et al. Novel asymmetric wettable AgNPs/chitosan wound dressing: in vitro and in vivo evaluation[J]. ACS Applied Materials & Interfaces,2016, 8(6): 3958-3968. [21] JIANG X M, BAO L H, CHENG Y S, et al. Aerosol- assisted synthesis of monodisperse single-crystalline alpha-cristobalite nanospheres[J]. Chemical Communi- cations,2012, 48(9): 1293-1295. [22] LU Z, RONG K F, LI J , et al. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria[J]. Journal of Materials Science: Materials in Medicine, 2013, 24(6): 1465-1471. [23] ZHANG Y, ZHU P L, LI G, et al. Highly stable and re-dispersible nano Cu hydrosols with sensitively size-dependent catalytic and antibacterial activities[J]. Nanoscale,2015, 7(32): 13775-13783.
[1]季 凯,刘清晨,许梓欣,等.气溶胶法制备纳米黑色TiO2颗粒及其光催化降解四环素的研究[J].武汉工程大学学报,2021,43(04):367.[doi:10.19843/j.cnki.CN42-1779/TQ. 202012029]
JI Kai,LIU Qingchen,XU Zixin,et al.Aerosol Assisted Synthesis of Nano Black TiO2 for Photocatalytic Degradation of Tetracycline[J].Journal of Wuhan Institute of Technology,2021,43(05):367.[doi:10.19843/j.cnki.CN42-1779/TQ. 202012029]
[2]聂 震,季 凯,姜兴茂*.气溶胶法制备纳米Ni@SiO2及其对肉桂醛催化加氢的研究[J].武汉工程大学学报,2024,46(02):125.[doi:10.19843/j.cnki.CN42-1779/TQ.202009006]
NIE Zhen,JI Kai,JIANG Xingmao*.Aerosol synthesis of nano Ni@SiO2 and its catalytic hydrogenation ofcinnamaldehyde[J].Journal of Wuhan Institute of Technology,2024,46(05):125.[doi:10.19843/j.cnki.CN42-1779/TQ.202009006]