|本期目录/Table of Contents|

[1]刘文俊,巩朋成 *,吴云韬.基于Kronecker积的差分波束形成[J].武汉工程大学学报,2022,44(06):690-694.[doi:10.19843/j.cnki.CN42-1779/TQ.202206032]
 LIU Wenjun,GONG Pengcheng *,WU Yuntao.Differential Beamforming Based on Kronecker Product[J].Journal of Wuhan Institute of Technology,2022,44(06):690-694.[doi:10.19843/j.cnki.CN42-1779/TQ.202206032]
点击复制

基于Kronecker积的差分波束形成(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
44
期数:
2022年06期
页码:
690-694
栏目:
机电与信息工程
出版日期:
2022-12-31

文章信息/Info

Title:
Differential Beamforming Based on Kronecker Product
文章编号:
1674 - 2869(2022)06 - 0690 - 05
作者:
刘文俊12巩朋成 *12吴云韬12
1. 智能机器人湖北省重点实验室(武汉工程大学),湖北 武汉 430205;
2. 武汉工程大学计算机科学与工程学院,湖北 武汉 430205

Author(s):
LIU Wenjun12 GONG Pengcheng *12 WU Yuntao12
1. Hubei Key Laboratory of Intelligent Robot(Wuhan Institute of Technology),Wuhan 430205,China;
2. School of Computer Science & Engineering,Wuhan Institute of Technology,Wuhan 430205,China

关键词:
波束形成零陷约束空间差分算子Kronecker积
Keywords:
differential beamforming null constraint spatial difference operator Kronecker product
分类号:
TN912
DOI:
10.19843/j.cnki.CN42-1779/TQ.202206032
文献标志码:
A
摘要:
针对差分麦克风阵列在低频时有较大的自噪声干扰导致期望信号失真较大,产生较强噪声干扰的问题,提出一种利用Kronecker积来设计新的波束形成的方法降低麦克风阵列在低频时的自噪声干扰,提升麦克风阵列的性能。通过将一个全局麦克风阵列分解成2个子阵列,对这2个子阵列分别使用零陷约束算法和空间差分算子算法优化求解,最后将2个优化结果进行Kronecker积。仿真结果表明,相比于已有的波束形成器,本文设计的波束形成器不仅在低频时对自噪声有更有效的抑制作用,而且能够更好的在白噪声增益和指向性因子之间进行折衷,达到更好的波束形成效果。
Abstract:
Aimed at the feature of differential microphone array with higher self-noise interference at low frequencies, which may lead to more distortion of desired signal, and generate stronger noise interference, we proposed using Kronecker product to design a new beamforming method to reduce the self-noise interference and improve the performance of microphone array. By splitting a global microphone array into two sub-arrays, we optimized them by null constraint algorithm and spatial difference operator algorithm respectively. The simulation results show that, compared with existing beamformer, the designed beamformer can better improve the performance of suppressing the self-noise at low frequencies, and it also can better compromise between white noise gain and directivity factor, so as to get better performance.

参考文献/References:

[1] 郑毅豪. 基于差分麦克风阵列的波束形成技术研究[D]. 武汉:湖北工业大学,2020.
[2] CHAUDHARI K, SUTAONE M, BARKTAKKE P. Adaptive diagonal loading of MVDR beamformer for sustainable performance in noisy conditions[C]// 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka: IEEE, 2020: 1144-1147.
[3] LASHI D, QUEVY Q. Optimizing microphone arrays for delay-and-sum beamforming using genetic algorithms[C]// 2018 4th International Conference on Cloud Computing Technologies and Applications (Cloudtech). Brussels: IEEE, 2018: 1-5.
[4] CHEN X, BENESTY J, HUANG G P, et al. On the robustness of the superdirective beamformer[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 20: 838-849.
[5] JERIPOTULA P R, RAJENDRA NAIK B. Performance analysis of adaptive beamforming algorithms[C]// 2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET). Rome: IEEE, 2018: 1-4.
[6] 潘超,黄公平,陈景东. 面向语音通信与交互的麦克风阵列波束形成方法[J]. 信号处理,2020,36(06):804-815.
[7] DE SENA E, HACIHBBIBOGLU H, CVETKOVIC Z. On the design and implementation of higher order differential microphones[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(1): 162-174.
[8] HUANG G P, CHEN J D, BENESTY J. Insights into frequency-invariant beamforming with concentric circular microphone arrays[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2018, 26(12): 2305-2318.
[9] HUANG G P, BENESTY J, COHEN I, et al. A simple theory and new method of differential beamforming with uniform linear microphone arrays[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020, 28: 1079-1093.
[10] ZHU G X, HUANG K B, LAU V K, et al. Beamforming via kronecker decomposition for interference cancellation in the analog domain[C]// GLOBECOM 2017-2017 IEEE Global Communica-tions Conference. Singapore: IEEE, 2017: 1-6.
[11] COHEN I, BENESTY J, CHEN J D. Differential kronecker product beamforming[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019, 27(5): 892-902.
[12] YANG W X, BENESTY J, HUANG G P, et al. A new class of differential beamformers[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 594-606.
[13] WANG X H, COHEN I, CHEN J D. Study of the null directions on the performance of differential beamformers[C]// ICASSP 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Singapore: IEEE, 2022: 4928-4932.
[14] ZHAO X D, BENESTY J, CHEN J D, et al. Differential beamforming from the beampattern factorization perspective[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 632-643.
[15] JIN J L, HUANG G P, WANG X H, et al. Steering study of linear differential microphone arrays[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 158-170.
[16] BORRA F, BERNARDINI A, ANTONACCI F, et al. Uniform linear arrays of first-order steerable differential microphones[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019, 27(12): 1906-1918.
[17] BUCHRIS Y, COHEN I, BENESTY J. Frequency-domain design of asymmetric circular differential microphone arrays[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2018, 26(4): 760-773.
[18] JIN J L, BENESTY J, HUANG G P, et al. On differential beamforming with nonuniform linear microphone arrays[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2022, 30: 1840-1852.
[19] HUANG G P, ZHAO X D, CHEN J D, et al. Properties and limits of the minimum-norm differential beamformers with circular microphone arrays[C]// ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton: IEEE, 2019: 426-430.
[20] BUCHRIS Y, COHEN I, BENESTY J. Asymmetric supercardioid beamforming using circular microphone arrays[C]// 2018 26th European Signal Processing Conference (EUSIPCO). Rome: IEEE, 2018: 627-631.
[21] 潘超. 面向语音通信的麦克风阵列波束形成算法研究[D]. 西安:西北工业大学, 2018.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-06-26
基金项目:国家自然科学基金(62071172);湖北三峡实验室开放基金(SC215001)
作者简介:刘文俊,硕士研究生。 E-mail: 270561594@qq.com
*通讯作者:巩朋成,博士,副教授。 E-mail:gpcheng03@163.com
引文格式:刘文俊,巩朋成,吴云韬. 基于Kronecker积的差分波束形成[J]. 武汉工程大学学报,2022,44(6):690-694.

更新日期/Last Update: 2023-01-09