[1] B[A]RBULESCU A, DUMITRIU C ?, POPESCU-BODORIN N J A. Assessing atmospheric pollution and its impact on the human health [J]. Atmosphere, 2022,13: 938.
[2] BABUJI P, THIRUMALAISAMY S, DURAISAMY K, et al. Human health risks due to exposure to water pollution: a review[J]. Water, 2023, 15: 2532.
[3] GANIYU S A, SULEIMAN M A, AL-AMRANI W A, et al. Adsorptive removal of organic pollutants from contaminated waters using zeolitic imidazolate framework composites: a comprehensive and up-to-date review[J]. Separation and Purification Technology, 2023, 318: 123765.
[4] ANFAR Z, AIT AHSAINE H, ZBAIR M, et al. Recent trends on numerical investigations of response surface methodology for pollutants adsorption onto activated carbon materials: a review[J]. Critical Reviews in Environmental Science and Technology, 2020,50(10):1043-1084.
[5] DIAGBOYA P N E, DIKIO E D. Silica-based mesoporous materials; emerging designer adsorbents for aqueous pollutants removal and water treatment[J]. Microporous and Mesoporous Materials, 2018, 266: 252-267.
[6] WALKER G C, KONDA S S M, MAJI T K, et al. Preface to the "metal-organic frameworks: fundamental study and applications" joint virtual issue[J]. Langmuir, 2020, 36: 14901-14903.
[7] ZHENG S T, WU T, CHOU C T, et al. Development of composite inorganic building blocks for MOFs[J]. Journal of the American Chemical Society, 2012, 134: 4517-4520.
[8] YU X L, RYADUN A A, POTAPOV A S, et al. Ultra-low limit of luminescent detection of gossypol by terbium(III)-based metal-organic framework[J]. Journal of Hazardous Materials, 2023, 452: 131289.
[9] DROUT R J, ROBISON L, CHEN Z J, et al. Zirconium metal-organic frameworks for organic pollutant adsorption[J]. Trends in Chemistry, 2019, 1(3): 304-317.
[10] LI S Q,CHEN Y F,PEI X K,et al. Water purification: adsorption over metal-organic frameworks[J]. Chinese Journal of Chemistry, 2016, 34: 175-185.
[11] SARKER M, SONG J Y, JHUNG S H. Adsorption of organic arsenic acids from water over functionalized metal-organic frameworks[J]. Journal of Hazardous Materials, 2017, 335: 162-169.
[12] ALHUMAIMESS M S. Metal-organic frameworks and their catalytic applications[J]. Journal of Saudi Chemical Society, 2020, 24: 461-473.
[13] LI H, LI L B, LIN R B, et al. Porous metal-organic frameworks for gas storage and separation: status and challenges[J]. EnergyChem, 2019, 1(1): 100006.
[14] FéREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area [J]. Science, 2005, 309(5743): 2040-2042.
[15] SHADMEHR J, SEDAGHATI F, ZEINALI S. Efficient elimination of propiconazole fungicide from aqueous environments by nanoporous MIL-101(Cr): process optimization and assessment[J]. International Journal of Environmental Science and Technology, 2021, 18: 2937-2954.
[16] LI Z C, LIU X M, JIN W, et al. Adsorption behavior of arsenicals on MIL-101(Fe): the role of arsenic chemical structures[J]. Journals of Colloid and Interface Science, 2019, 554: 692-704.
[17] MIRSOLEIMANI-AZIZI S M, SETOODEH P, SAMIMI F, et al. Diazinon removal from aqueous media by mesoporous MIL-101(Cr) in a continuous fixed-bed system[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 4653-4664.
[18] MINH THANH H T, THU PHUONG T T, LE HANG P T, et al. Comparative study of Pb(II) adsorption onto MIL-101 and Fe-MIL-101 from aqueous solutions[J]. Journal of Environmental Chemical Engineering, 2018, 6: 4093-4102.
[19] JOSEPH L, SAHA M, KIM S, et al. Removal of Cu2+, Cd2+, and Pb2+ from aqueous solution by fabricated MIL-100(Fe) and MIL-101(Cr): experimental and molecular modeling study[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106663.
[20] CHEN M L, ZHOU S Y, XU Z, et al. Metal-organic frameworks of MIL-100(Fe, Cr) and MIL-101(Cr) for aromatic amines adsorption from aqueous solutions[J]. Molecules, 2019, 24(20): 3718.
[21] G?KIRMAK S?[G]üT E. Superior adsorption efficiency of MIL-101(Cr) and Nano-MIL-101(Cr) in anionic and cationic dye removal from aqueous solution[J]. ChemistrySelect, 2023, 8: 20500.
[22] ZHENG Y, CHU F, ZHANG B, et al. Ultrahigh adsorption capacities of carbon tetrachloride on MIL-101 and MIL-101/graphene oxide composites[J]. Microporous and Mesoporous Materials, 2018, 263: 71-76.
[23] WANG H, HAO Y, LIU Q, et al. Enhanced regenerability of metal-organic frameworks adsorbents: influence factors and improved methods[J]. Journal of Environmental Chemical Engineering, 2022, 10: 108737.
[24] ISIYAKA H A, JUMBRI K, SAMBUDI N S, et al. Removal of 4-chloro-2-methylphenoxyacetic acid from water by MIL-101(Cr) metal-organic framework: kinetics, isotherms and statistical models[J]. Royal Society Open Science, 2021, 8: 201553.
[25] 石杰, 尹艺静, 孙桂茹, 等. MIL-101(Fe)的制备及其对亚甲基蓝的快速高效吸附[J]. 当代化工研究, 2022(21): 41-43.
[26] DONG X Q, FAN Q, HAO W Z, et al. Adsorption and separation of hexane isomers in metal-organic frameworks (MOFs): a computational study[J]. Computational and Theoretical Chemistry, 2021, 1197: 113164.
[27] CHIBANI S, BADAWI M, LOISEAU T, et al. A DFT study of RuO4 interactions with porous materials: metal-organic frameworks (MOFs) and zeolites[J]. Physical Chemistry Chemical Physics, 2018, 20(24):16770-16776.
[28] BIGDELI A, KHORASHEH F, TOURANI S, et al. Molecular simulation study of the adsorption and diffusion properties of terephthalic acid in various metal organic frameworks[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 30: 1643-1652.
[29] DEGAGA G D, PANDEY R, GUPTA C, et al. Tailoring of the electronic property of Zn-BTC metal-organic framework via ligand functionalization: an ab initio investigation[J]. RSC Advances,2019, 9(25): 14260-14267.
[30] ERUCAR I, KESKIN S. High-throughput molecular simulations of metal organic frameworks for CO2 separation: opportunities and challenges[J]. Frontiers in Materials, 2018, 5: 00004.
[31] BAE Y S, SNURR R Q. Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angewandte Chemie (International Edition), 2011, 50: 11586-11596.
[32] WILLEMS T F,RYCROFT C H, KAZI M, et al. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials[J]. Microporous and Mesoporous Materials, 2012, 149: 134-141.
[33] OJHA A, TIWARY D, ORAON R, et al. Degrada-tions of endocrine-disrupting chemicals and pharmaceutical compounds in wastewater with carbon-based nanomaterials: a critical review[J]. Environmental Science and Pollution Research, 2021, 28: 30573-30594.
[34] SEDIGHI M, TALAIE M R, SABZYAN H, et al. A computational investigation on the roles of binding affinity and pore size on CO2/N2 overall adsorption process performance of MOFs through modifying MIL-101 structure[J]. Sustainable Materials and Technologies, 2023, 38: e00701.
[35] POURREZA A, ASKARI S, RASHIDI A, et al. Highly efficient SO3Ag-functionalized MIL-101(Cr) for adsorptive desulfurization of the gas stream: experimental and DFT study[J]. Chemical Engineering Journal, 2019, 363: 73-83.
[36] SHAO Y M, WANG S S, HUANG L L, et al. Adsorption and diffusion of CH4, N2, and their mixture in MIL-101(Cr): a molecular simulation study[J]. Journal of Chemical & Engineering Data, 2024,
[37] ZHANG S W, LIN Y L, LI Q, et al. Remarkable performance of N-doped carbonization modified MIL-101 for low-concentration benzene adsorption[J]. Separation and Purification Technology, 2022, 289: 120784.
[38] ZHANG D C, LIU J, WANG C, et al. Application of metal-organic frameworks in the purification of indoor hexanal: experiments and DFT calculations[J]. Building and Environment, 2020, 182: 107095.
[39] LI J, WANG L J, LIU Y Q, et al. Removal of berberine from wastewater by MIL-101(Fe): performance and mechanism[J]. ACS Omega, 2020, 5: 27962-27971.
[40] LUAN X, SHAH S J, YU X, et al. Dual positive charging sites for MIL-101 enhanced adsorption of toluene under high humidity conditions: experimental and theoretical studies[J]. Chemical Engineering Journal, 2024, 479: 147675.
[41] TEHRANI N H M H, ALIVAND M S, KAMALI A, et al. Seed-mediated synthesis of a modified micro-mesoporous MIL-101(Cr) for improved benzene and toluene adsorption at room conditions[J]. Journal of Environmental Chemical Engineering, 2023, 11: 109558.
[42] QUINTERO-áLVAREZ F G, MENDOZA- CASTILLO D I, ROJAS-MAYORGA C K, et al. Mechanism, interfacial interactions and thermodynamics of the monolayer adsorption of trace geogenic pollutants from water using mil metal-organic frameworks: fluorides and arsenates[J]. Journal of Molecular Liquids, 2023, 380: 121665.
[43] JIA D, LI Y, CAI H, et al. MIL-101(Fe) metal-organic framework nanoparticles functionalized with amino groups for Cr(VI) capture[J]. ACS Applied Nano Materials, 2023, 6: 6820-6830.
[44] QIN Y, ZHANG M, ZHANG F, et al. Achieving ultrafast and highly selective capture of radiotoxic tellurite ions on iron-based metal-organic frameworks through coordination bond-dominated conversion[J]. Journal of Hazardous Materials, 2024, 468: 133780.
[45] KESHAVARZ F, KAVUN V, VAN DER VEEN M A, et al. Molecular-level understanding of highly selective heavy rare earth element uptake by organophosphorus modified MIL-101(Cr)[J]. Chemical Engineering Journal, 2022, 440: 135905.
[46] FAN S, LU X R, LI H L, et al. Efficient removal of organophosphate esters by ligand functionalized MIL-101(Fe): modulated adsorption and DFT calcula-tions[J]. Chemosphere, 2022, 302: 134881.
[47] SEDIGHI M, TALAIE M R, SABZYAN H, et al. Evaluating equilibrium and kinetics of CO2 and N2 adsorption into amine-functionalized metal-substituted MIL-101 frameworks using molecular simulation[J]. Fuel, 2022, 308: 121965.
[48] ZHANG Z Z, WANG H, LI J Y, et al. Experimental measurement of the adsorption equilibrium and kinetics of CO2 in chromium-based metal-organic framework MIL-101[J]. Adsorption Science & Technology, 2013, 31(10): 903-916.
[49] LIU D, LIN Y S, LI Z, et al. Adsorption and separation of CH4/H2 in MIL-101s by molecular simulation study[J]. Chemical Engineering Science, 2013, 98: 246-254.
[50] ZHI G, QI X J, LI Y K, et al. Efficient treatment of smelting wastewater: 3D nickel foam@ MOF shatters the previous limitation, enabling high-throughput selective capture of arsenic to form non-homogeneous nuclei[J]. Separation and Purification Technology, 2024, 328: 124927.