|本期目录/Table of Contents|

[1]王博海,石胜伟*.MXenes应用于锂离子电池负极的研究进展[J].武汉工程大学学报,2025,47(02):151-159.[doi:10.19843/j.cnki.CN42-1779/TQ.202409009]
 WANG Bohai,SHI Shengwei*.Research progress on MXenes in lithium-ion battery anodes[J].Journal of Wuhan Institute of Technology,2025,47(02):151-159.[doi:10.19843/j.cnki.CN42-1779/TQ.202409009]
点击复制

MXenes应用于锂离子电池负极的研究进展
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年02期
页码:
151-159
栏目:
材料科学与工程
出版日期:
2025-05-09

文章信息/Info

Title:
Research progress on MXenes in lithium-ion battery anodes
文章编号:
1674 - 2869(2025)02 - 0151 - 09
作者:
武汉工程大学材料科学与工程学院,湖北 武汉 430205
Author(s):
School of Materials Science and Engineering,Wuhan Institute of Technology, Wuhan 430205,China
关键词:
Keywords:
分类号:
O482.54
DOI:
10.19843/j.cnki.CN42-1779/TQ.202409009
文献标志码:
A
摘要:
具有优异导电性、机械性能以及化学稳定性的二维层状过渡金属碳化物、氮化物或碳氮化物(MXenes)在储能领域受到了广泛关注。锂离子电池因其循环寿命长、绿色环保、无记忆效应等优点被认为是拥有巨大潜力的储能器件,但目前的负极材料都存在一些不足之处,如比容量还需进一步提高、充电前后体积会发生巨大变化,而将MXenes应用到锂离子电池中可以有效提升电池性能。介绍了MXenes的制备方法,并从结构调控以及与其他材料复合方面对MXenes近年来在锂离子电池中的应用研究进行了综述。MXenes的制备方法主要有化学法、熔融盐法、电化学法,不同方法制备的MXenes表面化学基团也有着差异。结构调控可以改变MXenes的层间距、层数以及整体结构,使MXenes暴露出更多活性位点并增强其储锂能力。从MXenes与硅、金属氧化物、碳材料复合的方面出发,讨论了MXenes复合材料的性能以及在锂离子电池负极中的研究进展。最后,本文总结了MXenes在锂离子电池负极中的研究进展,并对MXenes应用于锂离子电池的发展趋势进行了展望,为MXenes在锂离子电池中的后续研究提供了一定参考。
Abstract:
Two-dimensional layered transition metal carbides,nitrides,or carbon-nitrides (MXenes)with excellent electrical conductivity,mechanical properties,and chemical stability have received much attention in the field of energy storage. Lithium-ion batteries are regarded as energy storage devices with great potential due to their long cycle life,environmental friendliness and no memory effect. However,the current anode materials have such disadvantages as low specific capacity and large volume changes before and after charging. Applying MXenes in lithium-ion batteries can effectively improve their performance. This paper introduces the preparation methods of MXenes,and reviews the application of MXenes in lithium-ion batteries in recent years in terms of structure modulation and compounding with other materials. The preparation methods of MXenes mainly include the chemical method,the molten salt method and the electrochemical method,and the surface chemical groups of MXenes prepared by different methods vary. The structure modulation can change the interlayer spacing,the number of layers and the overall structure of MXenes,making MXenes expose more active sites and enhance the lithium storage capacity. By analyzing the composites of MXenes with silicon,metal oxides and carbon materials,the properties of MXenes composites and their research progress in lithium-ion battery anodes are discussed. In the end,this paper summarizes the research progress of MXenes in lithium-ion battery anodes, and provides an outlook on the future development of MXenes in lithium-ion batteries, offering some reference for further research on MXenes in lithium-ion batteries.

参考文献/References:

[1] YANG Z G, ZHANG J L,KINTNER-MEYER M C W,et al. Electrochemical energy storage for green grid [J]. Chemical Reviews,2011,111(5):3577-3613.
[2] ZHU Y Q,ZHOU S,FENG Y M,et al. Influences of solar energy on the energy efficiency design index for new building ships [J]. International Journal of Hydrogen Energy,2017,42(30):19389-19394.
[3] LIU C,CHENG M S,ZHAO B C,et al. A wind power plant with thermal energy storage for improving the utilization of wind energy [J]. Energies,2017,10(12):2126.
[4] DUPRé A, DROBINSKI P, ALONZO B, et al. Sub-hourly forecasting of wind speed and wind energy [J]. Renewable Energy,2020,145:2373-2379.
[5] MA M M,ZHANG M H,JIANG B T,et al. A review of all-solid-state electrolytes for lithium batteries:high-voltage cathode materials,solid-state electrolytes and electrode-electrolyte interfaces [J]. Materials Chemistry Frontiers,2023,7(7):1268-1297.
[6] PAMPAL E S, STOJANOVSKA E, SIMON B, et al. A review of nanofibrous structures in lithium ion batteries [J]. Journal of Power Sources,2015,300:199-215.
[7] BARBOSA J C,GON?ALVES R,COSTA C M,et al. Recent advances on materials for lithium-ion batteries [J]. Energies,2021,14(11):3145.
[8] FAN E S,LI L,WANG Z P, et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects [J]. Chemical Reviews,2020,120(14):7020-7063.
[9] WANG X F, LU X H, LIU B, et al. Flexible energy-storage devices: design consideration and recent progress [J]. Advanced Materials,2014,26(28):4763-4782.
[10] NITTA N,WU F X,LEE J T,et al. Li-ion battery materials:present and future [J]. Materials Today,2015,18(5):252-264.
[11] JI H S,XU X H, LI X, et al. A low-cost Si@C composite for lithium-ion batteries anode materials synthesized via freeze-drying process using kerf loss Si waste [J]. Ionics,2024,30(5):2585-2599.
[12] DU X P, HUANG Y, WANG J M, et al. Si/TiO2 carbon fiber core encapsulated in hierarchical multiple MXene@Co-MoS2 shells for constructing a free-standing anode of lithium storage[J]. Rare Metals,2024,43(9):4222-4233.
[13] PENG L L, FANG Z W, ZHU Y, et al. Holey 2D nanomaterials for electrochemical energy storage [J]. Advanced Energy Materials,2018,8(9):1702179.
[14] PRAMANIK A, MAHAPATRA P L, TROMER R,et al. Biotene:earth-abundant 2D material as sustainable anode for Li/Na-ion battery [J]. ACS Applied Materials & Interfaces,2024,16(2):2417-2427.
[15] GOGOTSI Y,ANASORI B. The rise of MXenes [J]. ACS Nano,2019,13(8):8491-8494.
[16] 彭婷,徐金新,张琪,等.Ti3C2Tx MXene水分散液的稳定性研究[J].武汉工程大学学报,2022,44(6):636-642.
[17] WANG X W, GUO J Y, XU K N,et al. In situ self-assembled NiS2 nanoparticles on MXene nanosheets as multifunctional separators:regulating shuttling effect and boosting redox reaction kinetics of lithium polysulfides [J]. Applied Surface Science,2024,645:158859.
[18] WEI C L, XI B J, WANG P, et al. In situ anchoring ultrafine ZnS nanodots on 2D MXene nanosheets for accelerating polysulfide redox and regulating Li plating [J]. Advanced Materials,2023,35(32):2303780.
[19] 杨佳璐,钱越,王可,等.MXene基纳米材料在高性能金属锂负极应用中的研究进展(英文)[J].新型炭材料(中英文),2023,38(4):659-677.
[20] LEE S H,KIM M S,LEE J H,et al. A Li-In alloy anode and Nb2CTx artificial solid-electrolyte interphase for practical Li metal batteries [J]. Journal of Materials Chemistry A,2022,10(8):4157-4169.
[21] LIU Z Q, YANG Y,ZHU Q Z, et al. Enhanced lithium-ion storage of the SiOx@C anode enabled by carbon coating coupled with MXene as a conductive binder [J]. Inorganic Chemistry Frontiers,2024,11(5):1511-1521.
[22] ANASORI B, NAGUIB M, EDITORS G. Two-dimensional MXenes [J]. MRS Bulletin,2023,48(3):238-244.
[23] LIM K R G, SHEKHIREV M, WYATT B C,et al. Fundamentals of MXene synthesis[J]. Nature Synthesis,2022,1(8):601-614.
[24] HONG W C, WYATT B C, NEMANI S K,et al. Double transition-metal MXenes:atomistic design of two-dimensional carbides and nitrides[J]. MRS Bulletin,2020,45(10):850-861.
[25] ANASORI B,GOGOTSI Y. MXenes:trends,growth,and future directions [J]. Graphene and 2D Materials,2022,7(3/4):75-79.
[26] MING F W,LIANG H F,HUANG G,et al. MXenes for rechargeable batteries beyond the lithium-ion [J]. Advanced Materials,2021,33(1):2004039.
[27] ZHANG T, SHEVCHUK K, WANG R J, et al. Delamination of chlorine-terminated MXene produced using molten salt etching [J]. Chemistry of Materials,2024,36(4):1998-2006.
[28] HUANG Z M,QIN J D,ZHU Y X,et al. Green and scalable electrochemical routes for cost-effective mass production of MXenes for supercapacitor electrodes [J]. Carbon Energy,2023,5(10):e295.
[29] LI T F,YAO L L,LIU Q L,et al. Fluorine-free synthesis of high-purity Ti3C2Tx(T=-OH,-O) via alkali treatment [J]. Angewandte Chemie(International Edition),2018,57(21):6115-6119.
[30] FAN Y X, LI L, ZHANG Y, et al. Recent advances in growth of transition metal carbides and nitrides(MXenes)crystals [J]. Advanced Functional Materials,2022,32(16):2111357.
[31] DRISCOLL N, RICHARDSON A G, MALESKI K,et al. Two-dimensional Ti3C2 MXene for high-resolution neural interfaces [J]. ACS Nano,2018,12(10):10419-10429.
[32] ALHABEB M,MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene) [J]. Chemistry of Materials,2017,29(18):7633-7644.
[33] URBANKOWSKI P,ANASORI B,MAKARYAN T,et al. Synthesis of two-dimensional titanium nitride Ti4N3(MXene) [J]. Nanoscale,2016,8(22):11385-11391.
[34] QU L S, ZHAO Z H, LI Z Y, et al. Synthesis and formation mechanism of Ti3C2Clx MXene by molten salt method [J]. Ceramics International,2024,50(14):25115-25121.
[35] LI Y B, SHAO H, LIN Z F, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte [J]. Nature Materials,2020,19:894-899.
[36] LIU R X, WEI S N, SHI B , et al. Preparation and properties of two-dimensional Ti2CTx MXene based on electroetching method [J]. Nanotechnology, 2024, 35(34): 345402.
[37] YANG S,ZHANG P P,WANG F X,et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene)using a binary aqueous system [J]. Angewandte Chemie(International Edition),2018,57(47):15491-15495.
[38] LI H. Practical evaluation of Li-ion batteries [J]. Joule,2019,3(4):911-914.
[39] WANG C Y, YANG C P, ZHENG Z J. Toward practical high-energy and high-power lithium battery anodes:present and future [J]. Advanced Science,2022,9(9):2105213.
[40] REN W F,ZHOU Y,LI J T,et al. Si anode for next-generation lithium-ion battery [J]. Current Opinion in Electrochemistry,2019,18:46-54.
[41] ZHANG Y S,LU Q B,ZHANG L S,et al. Adjustable MXene-based materials in metal-ion batteries:progress,prospects,and challenges [J]. Small Structures,2024,5(1):2300255.
[42] WANG C D, CHEN S M, XIE H, et al. Atomic Sn4+ decorated into vanadium carbide MXene interlayers for superior lithium storage [J]. Advanced Energy Materials,2019,9(4):1802977.
[43] KAMYSBAYEV V, FILATOV A S, HU H C, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes [J]. Science,2020,369(6506):979-983.
[44] ZHANG L S, WANG S Q, ZHANG Z H, et al. Regulating interlayer spacing and surface terminations of N-doped 3D MXenes with high-rate Li-ion storage capability [J]. Materials Letters,2023,349:134832.
[45] TIAN M, HAO Z K. Synthesis of vanadium-doped Ti3C2Tx MXene for enhanced lithium storage [J]. Functional Materials Letters,2023,16(3/4):2340006.
[46] ZHANG Y J,LI J L,GONG Z W,et al. Nitrogen and sulfur co-doped vanadium carbide MXene for highly reversible lithium-ion storage [J]. Journal of Colloid and Interface Science,2021,587:489-498.
[47] SUN D D, WANG M S, LI Z Y, et al. Two-dimensional Ti3C2 as anode material for Li-ion batteries [J]. Electrochemistry Communications,2014,47:80-83.
[48] ZHANG T Z, CHANG L B, ZHANG X F, et al. Simultaneously tuning interlayer spacing and termination of MXenes by Lewis-basic halides [J]. Nature Communications,2022,13:6731.
[49] ZHAO J B, WEN J, BAI L N, et al. One-step synthesis of few-layer niobium carbide MXene as a promising anode material for high-rate lithium ion batteries [J]. Dalton Transactions,2019,48(38):14433-14439.
[50] GANDLA D, LI Q, ZHOU Y A, et al. In-plane mesoporous 3D flower-like Mo2Ti2C3Clx MXene anodes for Li-ion batteries: from structure to performance [J]. Small,2024,20(45):2404880.
[51] GUAN K K, DONG L,XING Y Y, et al. Structure and surface modification of MXene for efficient Li/K-ion storage[J]. Journal of Energy Chemistry,2022,75:330-339.
[52] ZHOU H, ZHANG J Y, LIU J Z, et al. Silicon nanospheres supported on conductive MXene nanosheets as anodes for lithium-ion batteries [J]. ACS Applied Energy Materials,2023,6(1):160-169.
[53] GONG W J,WU M X, WANG Z, et al. Layer effects on MXenes electrode and it applied to silicon composite structures[J]. Journal of Energy Storage,2024,91:112038.
[54] JOHNSON B A, WHITE R E. Characterization of commercially available lithium-ion batteries [J]. Journal of Power Sources,1998,70(1):48-54.
[55] ZHOU G M,LI F,CHENG H M. Progress in flexible lithium batteries and future prospects [J]. Energy & Environmental Science,2014,7(4):1307-1338.
[56] YAN J H,LIU X B,QI H,et al. High-performance lithium-sulfur batteries with a cost-effective carbon paper electrode and high sulfur-loading [J]. Chemistry of Materials,2015,27(18):6394-6401.
[57] HU J W,WU Z P, ZHONG S W, et al. Folding insensitive,high energy density lithium-ion battery featuring carbon nanotube current collectors [J]. Carbon,2015,87:292-298.
[58] RANA K, SINGH J, LEE J T, et al. Highly conductive freestanding graphene films as anode current collectors for flexible lithium-ion batteries [J]. ACS Applied Materials & Interfaces,2014,6(14):11158-11166.
[59] TIAN Y, AN Y L, FENG J K. Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries [J]. ACS Applied Materials & Interfaces,2019,11(10):10004-10011.
[60] KAKARLA A K, BANDI H, SHANTHAPPA R,et al. Polyaniline layered N-doped carbon-coated iron oxide nanocapsules for extremely active Li-ion battery anode and oxygen evolution reaction [J]. Carbon,2024,228:119308.
[61] ZHANG Z Y, WENG L,RAO Q S, et al. Highly-dispersed iron oxide nanoparticles anchored on crumpled nitrogen-doped MXene nanosheets as anode for Li-ion batteries with enhanced cyclic and rate performance [J]. Journal of Power Sources,2019,439:227107.
[62] DUAN X,LIU J Q,Lü F S,et al. 3D porous structure Fe3O4@SnO2/MXene composites with enhanced electrochemical performance for lithium ion battery anode [J]. Journal of Energy Storage,2024,86(Part B):111308.
[63] NGUYEN T P,KIM I T. Self-assembled few-layered MoS2 on SnO2 anode for enhancing lithium-ion storage [J]. Nanomaterials,2020,10(12):2558.
[64] DU C Z, CHEN X Y, ZHU W Z, et al. 3D porous SnO2/MXene as a superior anode material for Li-ion and Na-ion battery[J]. Journal of Electroanalytical Chemistry,2024,967:118481.
[65] ZHAO C,WEI Z Y,ZHANG J,et al. Ultrafine SnO2 nanoparticles on delaminated MXene nanosheets as an anode for lithium-ion batteries [J]. Journal of Alloys and Compounds,2022,907:164428.
[66] WANG L, YUAN K, BAI H Y, et al. MXene/graphene oxide heterojunction as a high performance anode material for lithium ion batteries [J]. RSC Advances,2023,13(37):26239-26246.
[67] ABDAH M A A M, CHERUSSERI J, DZULKA-RNAIN N A,et al. Facile synthesis of microwave-etched Ti3C2 MXene/activated carbon hybrid for lithium-ion battery anode[J]. Journal of Electroanalytical Chemistry,2023,928: 117050.


相似文献/References:

[1]袁华,何云蔚,艾常春.钛酸锂作为锂离子电池负极材料的改性进展[J].武汉工程大学学报,2014,(08):20.[doi:103969/jissn16742869201408004]
 YUAN Hua,HE Yun wei,AI Chang chun.Progress of modification of lithium titanate as anode material for lithiumion battery[J].Journal of Wuhan Institute of Technology,2014,(02):20.[doi:103969/jissn16742869201408004]
[2]刘丹阳,王升高*,马 元,等.泡沫碳@SnO2复合材料的制备及电化学性能[J].武汉工程大学学报,2020,42(03):307.[doi:10.19843/j.cnki.CN42-1779/TQ.201912008]
 LIU Danyang,WANG Shenggao*,MA Yuan,et al.Preparation and Electrochemical Performances of Carbon Foam@SnO2 Composites[J].Journal of Wuhan Institute of Technology,2020,42(02):307.[doi:10.19843/j.cnki.CN42-1779/TQ.201912008]
[3]潘冰冰,胡 朴,赵周桥,等.Li/Ti摩尔比对Li4Ti5O12负极材料组成、结构和电化学性能的影响[J].武汉工程大学学报,2021,43(03):283.[doi:10.19843/j.cnki.CN42-1779/TQ.202011008]
 PAN Bingbing,HU Pu,ZHAO Zhouqiao,et al.Effects of Li/Ti Molar Ratio on Composition,Structure and Electrochemical Properties of Li4Ti5O12 Anode Material[J].Journal of Wuhan Institute of Technology,2021,43(02):283.[doi:10.19843/j.cnki.CN42-1779/TQ.202011008]
[4]赵周桥,胡 朴,潘冰冰,等.Na+掺杂对LiNi1/3Co1/3Mn1/3O2结构和电化学性质的影响[J].武汉工程大学学报,2021,43(04):402.[doi:10.19843/j.cnki.CN42-1779/TQ.202011016]
 ZHAO Zhouqiao,HU Pu,PAN Bingbing,et al.Effects of Sodium Ion Doping on Structure and Electrochemical Properties of LiNi1/3Co1/3Mn1/3O2[J].Journal of Wuhan Institute of Technology,2021,43(02):402.[doi:10.19843/j.cnki.CN42-1779/TQ.202011016]
[5]乔荣志,罗晓刚*.聚偏氟乙烯及其共聚物用作高润湿性锂离子电池隔膜的研究进展[J].武汉工程大学学报,2023,45(03):243.[doi:10.19843/j.cnki.CN42-1779/TQ.202205013]
 QIAO Rongzhi,LUO Xiaogang*.Advances in Polyvinylidene Fluoride and Its Copolymers Used asHigh Wettable Separator for Lithium-Ion Battery[J].Journal of Wuhan Institute of Technology,2023,45(02):243.[doi:10.19843/j.cnki.CN42-1779/TQ.202205013]

备注/Memo

备注/Memo:
收稿日期:2024-09-11
基金项目:国家自然科学基金(52173183);光电化学材料与器件教育部重点实验室开放课题(JDGD-202207)
作者简介:王博海,硕士研究生。Email:22205010032@stu.wit.edu.cn
*通信作者:石胜伟,博士,教授。Email:shisw@wit.edu.cn
引文格式:王博海,石胜伟. MXenes应用于锂离子电池负极的研究进展[J]. 武汉工程大学学报,2025,47(2):151-159.
更新日期/Last Update: 2025-05-08