[1] YANG Z G, ZHANG J L,KINTNER-MEYER M C W,et al. Electrochemical energy storage for green grid [J]. Chemical Reviews,2011,111(5):3577-3613.
[2] ZHU Y Q,ZHOU S,FENG Y M,et al. Influences of solar energy on the energy efficiency design index for new building ships [J]. International Journal of Hydrogen Energy,2017,42(30):19389-19394.
[3] LIU C,CHENG M S,ZHAO B C,et al. A wind power plant with thermal energy storage for improving the utilization of wind energy [J]. Energies,2017,10(12):2126.
[4] DUPRé A, DROBINSKI P, ALONZO B, et al. Sub-hourly forecasting of wind speed and wind energy [J]. Renewable Energy,2020,145:2373-2379.
[5] MA M M,ZHANG M H,JIANG B T,et al. A review of all-solid-state electrolytes for lithium batteries:high-voltage cathode materials,solid-state electrolytes and electrode-electrolyte interfaces [J]. Materials Chemistry Frontiers,2023,7(7):1268-1297.
[6] PAMPAL E S, STOJANOVSKA E, SIMON B, et al. A review of nanofibrous structures in lithium ion batteries [J]. Journal of Power Sources,2015,300:199-215.
[7] BARBOSA J C,GON?ALVES R,COSTA C M,et al. Recent advances on materials for lithium-ion batteries [J]. Energies,2021,14(11):3145.
[8] FAN E S,LI L,WANG Z P, et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects [J]. Chemical Reviews,2020,120(14):7020-7063.
[9] WANG X F, LU X H, LIU B, et al. Flexible energy-storage devices: design consideration and recent progress [J]. Advanced Materials,2014,26(28):4763-4782.
[10] NITTA N,WU F X,LEE J T,et al. Li-ion battery materials:present and future [J]. Materials Today,2015,18(5):252-264.
[11] JI H S,XU X H, LI X, et al. A low-cost Si@C composite for lithium-ion batteries anode materials synthesized via freeze-drying process using kerf loss Si waste [J]. Ionics,2024,30(5):2585-2599.
[12] DU X P, HUANG Y, WANG J M, et al. Si/TiO2 carbon fiber core encapsulated in hierarchical multiple MXene@Co-MoS2 shells for constructing a free-standing anode of lithium storage[J]. Rare Metals,2024,43(9):4222-4233.
[13] PENG L L, FANG Z W, ZHU Y, et al. Holey 2D nanomaterials for electrochemical energy storage [J]. Advanced Energy Materials,2018,8(9):1702179.
[14] PRAMANIK A, MAHAPATRA P L, TROMER R,et al. Biotene:earth-abundant 2D material as sustainable anode for Li/Na-ion battery [J]. ACS Applied Materials & Interfaces,2024,16(2):2417-2427.
[15] GOGOTSI Y,ANASORI B. The rise of MXenes [J]. ACS Nano,2019,13(8):8491-8494.
[16] 彭婷,徐金新,张琪,等.Ti3C2Tx MXene水分散液的稳定性研究[J].武汉工程大学学报,2022,44(6):636-642.
[17] WANG X W, GUO J Y, XU K N,et al. In situ self-assembled NiS2 nanoparticles on MXene nanosheets as multifunctional separators:regulating shuttling effect and boosting redox reaction kinetics of lithium polysulfides [J]. Applied Surface Science,2024,645:158859.
[18] WEI C L, XI B J, WANG P, et al. In situ anchoring ultrafine ZnS nanodots on 2D MXene nanosheets for accelerating polysulfide redox and regulating Li plating [J]. Advanced Materials,2023,35(32):2303780.
[19] 杨佳璐,钱越,王可,等.MXene基纳米材料在高性能金属锂负极应用中的研究进展(英文)[J].新型炭材料(中英文),2023,38(4):659-677.
[20] LEE S H,KIM M S,LEE J H,et al. A Li-In alloy anode and Nb2CTx artificial solid-electrolyte interphase for practical Li metal batteries [J]. Journal of Materials Chemistry A,2022,10(8):4157-4169.
[21] LIU Z Q, YANG Y,ZHU Q Z, et al. Enhanced lithium-ion storage of the SiOx@C anode enabled by carbon coating coupled with MXene as a conductive binder [J]. Inorganic Chemistry Frontiers,2024,11(5):1511-1521.
[22] ANASORI B, NAGUIB M, EDITORS G. Two-dimensional MXenes [J]. MRS Bulletin,2023,48(3):238-244.
[23] LIM K R G, SHEKHIREV M, WYATT B C,et al. Fundamentals of MXene synthesis[J]. Nature Synthesis,2022,1(8):601-614.
[24] HONG W C, WYATT B C, NEMANI S K,et al. Double transition-metal MXenes:atomistic design of two-dimensional carbides and nitrides[J]. MRS Bulletin,2020,45(10):850-861.
[25] ANASORI B,GOGOTSI Y. MXenes:trends,growth,and future directions [J]. Graphene and 2D Materials,2022,7(3/4):75-79.
[26] MING F W,LIANG H F,HUANG G,et al. MXenes for rechargeable batteries beyond the lithium-ion [J]. Advanced Materials,2021,33(1):2004039.
[27] ZHANG T, SHEVCHUK K, WANG R J, et al. Delamination of chlorine-terminated MXene produced using molten salt etching [J]. Chemistry of Materials,2024,36(4):1998-2006.
[28] HUANG Z M,QIN J D,ZHU Y X,et al. Green and scalable electrochemical routes for cost-effective mass production of MXenes for supercapacitor electrodes [J]. Carbon Energy,2023,5(10):e295.
[29] LI T F,YAO L L,LIU Q L,et al. Fluorine-free synthesis of high-purity Ti3C2Tx(T=-OH,-O) via alkali treatment [J]. Angewandte Chemie(International Edition),2018,57(21):6115-6119.
[30] FAN Y X, LI L, ZHANG Y, et al. Recent advances in growth of transition metal carbides and nitrides(MXenes)crystals [J]. Advanced Functional Materials,2022,32(16):2111357.
[31] DRISCOLL N, RICHARDSON A G, MALESKI K,et al. Two-dimensional Ti3C2 MXene for high-resolution neural interfaces [J]. ACS Nano,2018,12(10):10419-10429.
[32] ALHABEB M,MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene) [J]. Chemistry of Materials,2017,29(18):7633-7644.
[33] URBANKOWSKI P,ANASORI B,MAKARYAN T,et al. Synthesis of two-dimensional titanium nitride Ti4N3(MXene) [J]. Nanoscale,2016,8(22):11385-11391.
[34] QU L S, ZHAO Z H, LI Z Y, et al. Synthesis and formation mechanism of Ti3C2Clx MXene by molten salt method [J]. Ceramics International,2024,50(14):25115-25121.
[35] LI Y B, SHAO H, LIN Z F, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte [J]. Nature Materials,2020,19:894-899.
[36] LIU R X, WEI S N, SHI B , et al. Preparation and properties of two-dimensional Ti2CTx MXene based on electroetching method [J]. Nanotechnology, 2024, 35(34): 345402.
[37] YANG S,ZHANG P P,WANG F X,et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene)using a binary aqueous system [J]. Angewandte Chemie(International Edition),2018,57(47):15491-15495.
[38] LI H. Practical evaluation of Li-ion batteries [J]. Joule,2019,3(4):911-914.
[39] WANG C Y, YANG C P, ZHENG Z J. Toward practical high-energy and high-power lithium battery anodes:present and future [J]. Advanced Science,2022,9(9):2105213.
[40] REN W F,ZHOU Y,LI J T,et al. Si anode for next-generation lithium-ion battery [J]. Current Opinion in Electrochemistry,2019,18:46-54.
[41] ZHANG Y S,LU Q B,ZHANG L S,et al. Adjustable MXene-based materials in metal-ion batteries:progress,prospects,and challenges [J]. Small Structures,2024,5(1):2300255.
[42] WANG C D, CHEN S M, XIE H, et al. Atomic Sn4+ decorated into vanadium carbide MXene interlayers for superior lithium storage [J]. Advanced Energy Materials,2019,9(4):1802977.
[43] KAMYSBAYEV V, FILATOV A S, HU H C, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes [J]. Science,2020,369(6506):979-983.
[44] ZHANG L S, WANG S Q, ZHANG Z H, et al. Regulating interlayer spacing and surface terminations of N-doped 3D MXenes with high-rate Li-ion storage capability [J]. Materials Letters,2023,349:134832.
[45] TIAN M, HAO Z K. Synthesis of vanadium-doped Ti3C2Tx MXene for enhanced lithium storage [J]. Functional Materials Letters,2023,16(3/4):2340006.
[46] ZHANG Y J,LI J L,GONG Z W,et al. Nitrogen and sulfur co-doped vanadium carbide MXene for highly reversible lithium-ion storage [J]. Journal of Colloid and Interface Science,2021,587:489-498.
[47] SUN D D, WANG M S, LI Z Y, et al. Two-dimensional Ti3C2 as anode material for Li-ion batteries [J]. Electrochemistry Communications,2014,47:80-83.
[48] ZHANG T Z, CHANG L B, ZHANG X F, et al. Simultaneously tuning interlayer spacing and termination of MXenes by Lewis-basic halides [J]. Nature Communications,2022,13:6731.
[49] ZHAO J B, WEN J, BAI L N, et al. One-step synthesis of few-layer niobium carbide MXene as a promising anode material for high-rate lithium ion batteries [J]. Dalton Transactions,2019,48(38):14433-14439.
[50] GANDLA D, LI Q, ZHOU Y A, et al. In-plane mesoporous 3D flower-like Mo2Ti2C3Clx MXene anodes for Li-ion batteries: from structure to performance [J]. Small,2024,20(45):2404880.
[51] GUAN K K, DONG L,XING Y Y, et al. Structure and surface modification of MXene for efficient Li/K-ion storage[J]. Journal of Energy Chemistry,2022,75:330-339.
[52] ZHOU H, ZHANG J Y, LIU J Z, et al. Silicon nanospheres supported on conductive MXene nanosheets as anodes for lithium-ion batteries [J]. ACS Applied Energy Materials,2023,6(1):160-169.
[53] GONG W J,WU M X, WANG Z, et al. Layer effects on MXenes electrode and it applied to silicon composite structures[J]. Journal of Energy Storage,2024,91:112038.
[54] JOHNSON B A, WHITE R E. Characterization of commercially available lithium-ion batteries [J]. Journal of Power Sources,1998,70(1):48-54.
[55] ZHOU G M,LI F,CHENG H M. Progress in flexible lithium batteries and future prospects [J]. Energy & Environmental Science,2014,7(4):1307-1338.
[56] YAN J H,LIU X B,QI H,et al. High-performance lithium-sulfur batteries with a cost-effective carbon paper electrode and high sulfur-loading [J]. Chemistry of Materials,2015,27(18):6394-6401.
[57] HU J W,WU Z P, ZHONG S W, et al. Folding insensitive,high energy density lithium-ion battery featuring carbon nanotube current collectors [J]. Carbon,2015,87:292-298.
[58] RANA K, SINGH J, LEE J T, et al. Highly conductive freestanding graphene films as anode current collectors for flexible lithium-ion batteries [J]. ACS Applied Materials & Interfaces,2014,6(14):11158-11166.
[59] TIAN Y, AN Y L, FENG J K. Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries [J]. ACS Applied Materials & Interfaces,2019,11(10):10004-10011.
[60] KAKARLA A K, BANDI H, SHANTHAPPA R,et al. Polyaniline layered N-doped carbon-coated iron oxide nanocapsules for extremely active Li-ion battery anode and oxygen evolution reaction [J]. Carbon,2024,228:119308.
[61] ZHANG Z Y, WENG L,RAO Q S, et al. Highly-dispersed iron oxide nanoparticles anchored on crumpled nitrogen-doped MXene nanosheets as anode for Li-ion batteries with enhanced cyclic and rate performance [J]. Journal of Power Sources,2019,439:227107.
[62] DUAN X,LIU J Q,Lü F S,et al. 3D porous structure Fe3O4@SnO2/MXene composites with enhanced electrochemical performance for lithium ion battery anode [J]. Journal of Energy Storage,2024,86(Part B):111308.
[63] NGUYEN T P,KIM I T. Self-assembled few-layered MoS2 on SnO2 anode for enhancing lithium-ion storage [J]. Nanomaterials,2020,10(12):2558.
[64] DU C Z, CHEN X Y, ZHU W Z, et al. 3D porous SnO2/MXene as a superior anode material for Li-ion and Na-ion battery[J]. Journal of Electroanalytical Chemistry,2024,967:118481.
[65] ZHAO C,WEI Z Y,ZHANG J,et al. Ultrafine SnO2 nanoparticles on delaminated MXene nanosheets as an anode for lithium-ion batteries [J]. Journal of Alloys and Compounds,2022,907:164428.
[66] WANG L, YUAN K, BAI H Y, et al. MXene/graphene oxide heterojunction as a high performance anode material for lithium ion batteries [J]. RSC Advances,2023,13(37):26239-26246.
[67] ABDAH M A A M, CHERUSSERI J, DZULKA-RNAIN N A,et al. Facile synthesis of microwave-etched Ti3C2 MXene/activated carbon hybrid for lithium-ion battery anode[J]. Journal of Electroanalytical Chemistry,2023,928: 117050.