|本期目录/Table of Contents|

[1]杨超凡,邹 凡,金锐博,等. 商用光纤产生高能低噪声平坦可见光超连续谱的设计 [J].武汉工程大学学报,2025,47(02):210-217.[doi:10.19843/j.cnki.CN42-1779/TQ.202403032]
 YANG Chaofan,ZOU Fan,JIN Ruibo,et al. High-energy low-noise flat visible supercontinuum spectrum generation in commercial optical fibers [J].Journal of Wuhan Institute of Technology,2025,47(02):210-217.[doi:10.19843/j.cnki.CN42-1779/TQ.202403032]
点击复制

商用光纤产生高能低噪声平坦可见光超连续谱的设计
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年02期
页码:
210-217
栏目:
机电与信息工程
出版日期:
2025-05-09

文章信息/Info

Title:
High-energy low-noise flat visible supercontinuum spectrum generation in commercial optical fibers
文章编号:
1674 - 2869(2025)02 - 0210 - 08
作者:
光学信息与模式识别湖北省重点实验室(武汉工程大学),湖北 武汉 430205
Author(s):
Hubei Key Laboratory of Optical Information and Pattern Recognition (Wuhan Institute of Technology), Wuhan 430205, China
关键词:
Keywords:
分类号:
TN248
DOI:
10.19843/j.cnki.CN42-1779/TQ.202403032
文献标志码:
A
摘要:
可见光超连续谱(SC)是原子光频标系统的重要组成部分,直接用于多种光频标的计量、转换和传播。为满足稳定度达10-18量级光频标的应用需求,本文基于数值迭代仿真算法,提出了一种商用光纤产生高能低噪声平坦可见光SC的有效设计。通过选取中心波长780 nm、脉宽200 fs以及峰值功率300 kW的线偏振脉冲激光泵浦长度15 cm的商用保偏光子晶体光纤(NL-PM-1050-NEG),充分利用受激拉曼散射与四波混频耦合作用导致SC噪声放大的增益饱和,有效抑制非相干的展宽贡献。获得的可见光SC光谱覆盖456~1 526 nm,平坦度为7 dB,光谱能量约为60 nJ,平均相干因子[〈|g12|〉]和平均相对强度噪声[〈NRIN〉]分别达到了1和0.11%。该可见光SC不仅具有媲美以往工作的高相位相干特性、低强度噪声以及可观的光谱平坦度,而且产生的光谱范围达到了3个倍频程,光谱能量提升了数倍以上。此外,所采用的光子晶体光纤为商用光纤,与自制光纤方案对比,节约了研发成本、减少了研发周期。
Abstract:
Visible supercontinuum spectrum (SC) is an important component of atomic optical frequency standards, and is directly used for measurement, conversion, and transmission of various optical frequencies. To meet the application requirements of optical frequency standards with stability at the 10-18 level, we proposed an effective design for high-energy, low-noise, flat visible SC generation using commercial optical fibers based on numerical iterative simulation algorithms. Selecting a polarization-maintaining photonic crystal fiber (NL-PM-1050-NEG) at 780 nm wavelength, 200 fs pulse width, 300 kW peak power, and 15 cm pump length, the gain saturation from stimulated Raman scattering and four-wave mixing coupling suppresses noise amplification, successfully inhibiting incoherent broadening. The resulted visible SC spans 456-1 526 nm, with a 7 dB flatness, an approximately 60 nJ spectral energy, and average coherence factor and relative intensity noise of 1 and 0.11%, respectively. This visible SC has high phase coherence, low intensity noise, and notable spectral flatness , covers a spectral range of three octaves, and has a spectral energy several times higher. Using a photonic crystal fiber commercially reduces costs and development time compared to custom-made fibers.

参考文献/References:

[1] ALFANO R R. The supercontinuum laser source: fundamentals with updated references [M]. New York: Springer, 2006.
[2] LIU H H, YU Y, SONG W, et al. Recent development of flat supercontinuum generation in specialty optical fibers [J]. Opto-Electronic Advances, 2019, 2(2): 180020.
[3] 杨未强, 宋锐, 韩凯, 等. 超连续谱激光光源研究进展 [J]. 国防科技大学学报, 2020, 42(1): 1-9.
[4] HONG L H, LIU L Q, LIU Y Y, et al. Intense ultraviolet-visible-infrared full-spectrum laser [J]. Light: Science & Applications, 2023, 12(1): 199.
[5] POUDEL C, KAMINSKI C F. Supercontinuum radiation in fluorescence microscopy and biomedical imaging applications [J]. Journal of the Optical Society of America B, 2019, 36(2): A139-A153.
[6] 陈志杰, 潘天宇, 徐源来, 等. 激光化学气相沉积法制备多层氧化铈缓冲层薄膜 [J]. 武汉工程大学学报, 2022, 44(1): 42-47.
[7] 李博, 陈胜平, 李敬岁, 等. 线偏振超连续谱研究进展 [J]. 光学学报, 2023, 43(17): 1719003.
[8] LIM H, JIANG Y, WANG Y M, et al. Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm [J]. Optics Letters, 2005, 30(10): 1171-1173.
[9] RUEHL A, MARTIN M J, COSSEL K C, et al. Ultrabroadband coherent supercontinuum frequency comb [J]. Physical Review A, 2011, 84(1): 011806.
[10] LUDLOW A D, BOYD M M, YE J, et al. Optical atomic clocks [J]. Reviews of Modern Physics, 2015, 87(2): 637-701.
[11] DAI S Y, ZHENG F S, LIU K, et al. Cold atom clocks and their applications in precision measurements [J]. Chinese Physics B, 2021, 30(1): 013701.
[12] 黎玥, 董克攻, 李峰云, 等. 长锥区光子晶体光纤实现300 W高功率可见光超连续谱输出 [J]. 强激光与粒子束, 2021, 33(2): 021002.
[13] FANG Y X, BAO C J, LI S A, et al. Recent progress of supercontinuum generation in nanophotonic waveguides [J]. Laser & Photonics Reviews, 2023, 17(1): 2200205.
[14] DE LA CADENA A, PARK J, TEHRANI K F, et al. Simultaneous label-free autofluorescence multi-harmonic microscopy driven by the supercontinuum generated from a bulk nonlinear crystal [J]. Biomedical Optics Express, 2024, 15(2): 491-505.
[15] RANKA J K, WINDELER R S, STENTZ A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm [J]. Optics Letters, 2000, 25(1): 25-27.
[16] FANG X H, HU M L, HUANG L L, et al. Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber [J]. Optics Letters, 2012, 37(12): 2292-2294.
[17] 余海湖, 吴建文, 马悦, 等. 高非线性光子晶体光纤中可见光至近红外超连续谱的产生 [J]. 光子学报, 2022, 51(9): 0906001.
[18] ZHANG H Y, LI Y, YAN D L, et al. All-fiber high power supercontinuum generation by cascaded photo-nic crystal fibers ranging from 370 nm to 2 400 nm [J]. IEEE Photonics Journal, 2020, 12(2):7101608.
[19] PRINCE M T M, ALAM M S. Comprehensive analysis of dual core photonic crystal fibers for optimizing optical properties towards highly coherent supercontinuum generation [J]. Journal of Lightwave Technology, 2023, 41(17): 5703-5713.
[20] ZHANG H Y, LI F Y, LIAO R Y, et al. Supercontinuum generation of 314.7 W ranging from 390 to 2 400 nm by tapered photonic crystal fiber [J]. Optics Letters, 2021, 46(6): 1429-1432.
[21] S?RENSEN S T, LARSEN C, JAKOBSEN C, et al. Single-mode pumped high air-fill fraction photonic crystal fiber taper for high-power deep-blue supercontinuum sources [J]. Optics Letters, 2014, 39(4): 1097-1100.
[22] HUNTEMANN N, SANNER C, LIPPHARDT B, et al. Single-ion atomic clock with 3×10?18 systematic uncertainty [J]. Physical Review Letters, 2016, 116(6): 063001.
[23] 黄垚, 管桦, 高克林. 不确定度和稳定度达10-18量级的钙离子光频标 [J]. 计测技术, 2023, 43(3): 116-128.
[24] HEIDT A M, FEEHAN J S, PRICE J H V, et al. Limits of coherent supercontinuum generation in normal dispersion fibers [J]. Journal of the Optical Society of America B, 2017, 34(4): 764-775.
[25] GONZALO I B, ENGELSHOLM R D, S?RENSEN M P, et al. Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation [J]. Scientific Reports, 2018, 8: 6579.
[26] DUDLEY J M, COEN S. Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers [J]. Optics Letters, 2002, 27(13): 1180-1182.
[27] BLOW K J, WOOD D. Theoretical description of transient stimulated Raman scattering in optical fibers [J]. IEEE Journal of Quantum Electronics, 1989, 25(12): 2665-2673.
[28] DUDLEY J M,GENTY G,COEN S. Supercontinuum generation in photonic crystal fiber [J]. Reviews of Modern Physics, 2006, 78(4): 1135-1184.
[29] 刘双龙. 宽带相干反斯托克斯拉曼散射光谱探测和显微成像研究 [D]. 深圳: 深圳大学, 2019.
[30] HEIDT A M, HARTUNG A, BOSMAN G W, et al. Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers [J]. Optics Express, 2011, 19(4): 3775-3787.
[31] RAVI A, BECK M, PHILLIPS D F, et al. Visible-spanning flat supercontinuum for astronomical applications [J]. Journal of Lightwave Technology, 2018, 36(22): 5309-5315.
[32] GENIER E, GRELET S, ENGELSHOLM R D, et al. Ultra-flat, low-noise, and linearly polarized fiber supercontinuum source covering 670-1 390 nm [J]. Optics Letters, 2021, 46(8): 1820-1823.


相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-03-29
基金项目:国家自然科学基金 (11904112,92365106,12074299) ;武汉工程大学科学研究基金(K202255);湖北省自然科学基金(2022CFA039)
作者简介:杨超凡,硕士研究生。Email: witycf97828@163.com
*通信作者:吴浩煜,博士,特聘副教授。Email: haoyuwu@wit.edu.cn
引文格式:杨超凡,邹凡,金锐博,等. 商用光纤产生高能低噪声平坦可见光超连续谱的设计[J]. 武汉工程大学学报,2025,47(2):210-217.
更新日期/Last Update: 2025-05-08