|本期目录/Table of Contents|

[1]孙 畅,昝建航,李 斌,等.随机车流荷载下基于正则化的位移影响线识别方法研究[J].武汉工程大学学报,2025,47(02):224-230.[doi:10.19843/j.cnki.CN42-1779/TQ.202405001]
 SUN Chang,ZAN Jianhang,LI Bin,et al.Regularization-based identification method for displacement influence lines under random traffic loads[J].Journal of Wuhan Institute of Technology,2025,47(02):224-230.[doi:10.19843/j.cnki.CN42-1779/TQ.202405001]
点击复制

随机车流荷载下基于正则化的位移影响线识别方法研究
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年02期
页码:
224-230
栏目:
资源与土木工程
出版日期:
2025-05-09

文章信息/Info

Title:
Regularization-based identification method for displacement influence lines under random traffic loads
文章编号:
1674 - 2869(2025)02 - 0224 - 07
作者:
1. 武汉工程大学土木工程与建筑学院,湖北 武汉 430074;
2. 绿色土木工程材料与结构湖北省工程研究中心,湖北 武汉 430074;
3. 广西壮族自治区贵港市公路发展中心,广西 贵港,537100
Author(s):
1. School of Civil Engineering and Architecture,Wuhan Institute of Technology,Wuhan 430074,China;
2. Hubei Provincial Engineering Research Center for Green Civil Engineering Materials and Structures,Wuhan 430074,China
3. Guangxi Highway Development Center,Guigang 537100,China
关键词:
Keywords:
分类号:
U443
DOI:
10.19843/j.cnki.CN42-1779/TQ.202405001
文献标志码:
A
摘要:
为贴合桥梁运营的实际交通状况,考虑过桥交通流的随机性,提出一种在随机车流荷载作用下的简支梁桥影响线识别方法。该方法通过建立随机车流荷载模型并获取随机车流下的桥梁响应数据,结合车流参数建立影响线识别的数学模型,将随机车流荷载转化为车轴响应叠加,进而采用稀疏正则化方法识别桥梁影响线。通过20 m简支梁桥的数值模型,提取桥梁在4种车速及随机车流荷载下的跨中位移响应,基于经验模态分解剔除车辆动力响应并采用正则化提取桥梁影响线,验证方法的可行性与有效性,利用全局误差和峰值相对误差定量评价其识别效果。研究结果表明:提出的方法能够有效去除车辆荷载产生的动态波动,在单辆车及随机车流荷载下均能准确识别出简支梁桥的位移影响线,并具有较高的识别精度。单辆车过桥时,车速为72 km/h的识别误差最大,全局误差和峰值相对误差分别为4.959%和9.897%;随机车流荷载下识别影响线的全局误差为4.53%,峰值相对误差7.89%。
Abstract:
To fit the actual traffic conditions of bridge in operation,considering the randomness of traffic flow crossing the bridge,a method was proposed to identify the influence line of a simply supported beam bridge under random traffic loads. By establishing a model for random traffic loads and collecting bridge response data under such conditions,a mathematical model for influence line identification was developed based on traffic parameters. This model transforms random traffic loads into axle response superposition and utilizes a sparse regularization method to identify the bridge influence line. Using a numerical model of a 20 m simply supported beam bridge,midspan displacement responses under four different vehicle speeds and random traffic loads were extracted. Employing empirical mode decomposition to remove vehicle dynamic response and regularization to extract the bridge influence line,the feasibility and effectiveness of the method were confirmed. The identification effects were quantitatively evaluated by using global error and peak relative error. Results demonstrated that the proposed method effectively eliminates dynamic fluctuations due to vehicle loads,accurately identifies the displacement influence line of simply supported beam bridges under both single vehicle and random traffic load scenarios,and exhibits high recognition accuracy. Notably,the largest identification error occurred when a single vehicle travelled at a speed of 72 km/h,with global and peak relative errors of 4.959% and 9.897% respectively. Under random traffic load conditions,the global error in identifying the influence line was 4.53%,with a peak relative error of 7.89%.

参考文献/References:

[1] LIN S W,DU Y L,YI T H,et al. Influence lines-based model updating of suspension bridges considering boundary conditions[J]. Advances in Structural Engineering,2023,26(2):316-328.
[2] 陈堃,卢海林,杨宏印,等. 基于动静载试验的连续刚构桥梁模型修正[J]. 武汉工程大学学报,2019,41(2):150-154.
[3] 黄民水,雷勇志. 基于模态参数的结构损伤识别应用综述[J]. 武汉工程大学学报,2021,43(4):417-427.
[4] 周宇,狄生奎,李喜梅,等 .基于弹性约束梁应变影响线曲率的桥梁结构损伤识别[J]. 应用基础与工程科学学报,2021,29(4):901-914.
[5] SUN Z, SIRINGORINGO D M, FUJINO Y. Load-carrying capacity evaluation of girder bridge using moving vehicle [J]. Engineering Structures,2021,229:111645.
[6] ZHENG X, YI T H, ZHONG J W, et al. Rapid evaluation of load-carrying capacity of long-span bridges using limited testing vehicles [J]. Journal of Bridge Engineering,2022,27(4):04022008.
[7] WANG N B,HE L X,REN W X,et al. Extraction of influence line through a fitting method from bridge dynamic response induced by a passing vehicle [J]. Engineering Structures,2017,151:648-664.
[8] 陈志为,杨维彪,程棋锋,等. 基于正则化与B样条曲线的桥梁影响线识别方法[J]. 中国公路学报,2019,32(3):101-108.
[9] IENG S S. Bridge influence line estimation for bridge weigh-in-motion system [J]. Journal of Computing in Civil Engineering,2015,29(1):06014006.
[10] PIMENTEL R,RIBEIRO D,MATOS L,et al. Bridge weigh-in-motion system for the identification of train loads using fiber-optic technology [J]. Structures,2021,30:1056-1070.
[11] WU B T, WU G, YANG C Q. Parametric study of a rapid bridge assessment method using distributed macro-strain influence envelope line [J]. Mechanical Systems and Signal Processing,2019,120:642-663.
[12] 周宇,尚稳齐,吴德义,等. 基于经验模态分解与Tikhonov正则化的梁桥影响线识别方法[J].振动工程学报,2025,38(1):144-153.
[13] 长安大学. 一种基于实测数据的公路桥梁随机车流模拟方法:201510075950.5[P]. 2015-09-23.
[14] 陈水生,赵辉,李锦华,等. 随机车流作用的公路斜拉桥振动响应分析[J]. 沈阳建筑大学学报(自然科学版),2022,38(1):84-94.
[15] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society A,1998,454(1971):903-995.
[16] 彭真. 基于位移影响线的桥梁损伤识别及传感器优化布置研究[D]. 哈尔滨:哈尔滨工业大学,2018.


相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-05-08
基金项目:贵港市自筹经费科研项目(贵路养函[2023] 40号)
作者简介:孙 畅,硕士研究生。Email:905964766@qq.com
*通信作者:黄民水,博士,教授。Email:huangminshui@tsinghua.org.cn
引文格式:孙畅,昝建航,李斌,等. 随机车流荷载下基于正则化的位移影响线识别方法研究[J]. 武汉工程大学学报,2025,47(2):224-230.
更新日期/Last Update: 2025-05-08