|本期目录/Table of Contents|

[1]韩 冰,梁 恩,张 诣,等.新型富氮多孔有机材料的合成及催化性能研究[J].武汉工程大学学报,2025,47(03):267-273.[doi:10.19843/j.cnki.CN42-1799/TQ.202502005]
 HAN Bing,LIANG En,ZHANG Yi,et al.Synthesis of a novel nitrogen-rich porous organic polymer and its catalytic performance[J].Journal of Wuhan Institute of Technology,2025,47(03):267-273.[doi:10.19843/j.cnki.CN42-1799/TQ.202502005]
点击复制

新型富氮多孔有机材料的合成及催化性能研究
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年03期
页码:
267-273
栏目:
现代大化工
出版日期:
2025-06-30

文章信息/Info

Title:
Synthesis of a novel nitrogen-rich porous organic polymer and its catalytic performance
文章编号:
1674 - 2869(2025)03 - 0267 - 07
作者:
1.武汉工程大学化工与制药学院,湖北 武汉 430205;
2.武汉工程大学化学与环境工程学院,湖北 武汉 430205
Author(s):
1. School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China;
2. School of Chemistry and Environmental Engineering,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
Keywords:
分类号:
O643.36
DOI:
10.19843/j.cnki.CN42-1799/TQ.202502005
文献标志码:
A
摘要:
多孔有机材料(POPs)凭借其低骨架密度、高比表面积、可调孔径、易功能化及优异稳定性等特点,在气体吸附、分离及非均相催化领域展现出重要应用潜力。通过"自下而上"的分子设计策略,将富氮嘧啶杂环结构单元精准引入POPs骨架,成功制备了新型氮掺杂多孔材料TMB-TPAD-POP。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、热重分析(TG)和氮气吸附-脱附等温线等技术系统表征了材料的晶体结构、微观形貌、热稳定性及孔隙特性。以苯甲醛与丙二腈的Knoevenagel缩合为模型反应,在80 ℃条件下,TMB-TPAD-POP展现出显著催化性能,8 h内产率达99%。机理研究表明:联嘧啶环中相邻氮原子协同活化底物:其孤对电子可活化丙二腈的α-C,促进碳负离子的高效形成,并通过稳定反应中间态显著降低活化能,从而实现产率的显著提升。本研究为构建高效氮杂环催化体系提供了新的设计思路,拓展了功能化POPs在有机合成中的应用。
Abstract:
Porous organic polymers (POPs) have emerged as promising materials for gas adsorption, separation, and heterogeneous catalysis, owing to their low skeletal density, high specific surface area, tunable pore size, facile functionalization, and exceptional stability. In this study, a novel nitrogen-doped porous material, TMB-TPAD-POP, was successfully synthesized through a "bottom-up" molecular design strategy that precisely incorporated nitrogen-rich pyrimidine heterocyclic units into the POP framework.?The material was systematically characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TG), and nitrogen adsorption-desorption isotherms to elucidate its crystal structure, micromorphology, thermal stability, and porosity. When employed as a catalyst for the Knoevenagel condensation of benzaldehyde and malononitrile under solvent-free conditions at 80 ℃, TMB-TPAD-POP demonstrated outstanding catalytic performance, achieving a 99% yield within 8 hours. Mechanistic studies revealed that adjacent nitrogen atoms in the bipyrimidine rings synergistically activate substrates: their lone-pair electrons facilitate the activation of the a-C in malononitrile, enabling efficient formation of carbon nucleophiles, while simultaneously stabilizing reaction intermediates to significantly reduce the activation energy, thereby enhancing the reaction yield. This study provides a new design strategy for constructing high-performance nitrogen-rich catalytic systems and expands the application of functionalized POPs in organic synthesis.

参考文献/References:

[1] LIU W H, YANG Y, GUO L, et al. Recent advances in porous organic polymers for sustainable gas separations [J]. Chemical Engineering Journal, 2024, 498: 155569.
[2] 于明涛, 唐霞霞, 王其彪, 等. 多孔有机聚合物接枝聚丙烯酸酯复合微球的合成及吸油性能研究 [J]. 武汉工程大学学报, 2024, 46(3): 250-257.
[3] SONG J H, KANG D W. Hazardous nitroaromatic explosives detection by emerging porous solid sensors [J]. Coordination Chemistry Reviews, 2023, 492: 215279.
[4] BAYATANI M, TORABI M, YARIE M, et al. Fabrication of an imidazolium-based magnetic ionic porous organic polymer for efficient heterogeneous catalysis of Betti reaction [J]. Journal of Molecular Liquids, 2023, 390: 122863.
[5] 高文秀, 吕杰琼, 高永平, 等. 富氮多孔有机聚合物催化制备α-氰基肉桂酸乙酯 [J]. 高等学校化学学报, 2022, 43(6): 218-225.
[6] LIM J, KIM M S, JANG W, et al. Solution-processable porous organic polymer for tailoring the charge transport property of planar perovskite solar cells [J]. Dyes and Pigments, 2020, 178: 108332.
[7] CUI X, XU Z L, LI Y H, et al. Nanosilver deposited on a porphyrin-benzothiadiazole functionalized nitrogen and sulfur rich porous organic polymer for reduction of 4-nitrophenol [J]. Microporous and Mesoporous Materials, 2021, 328: 111468.
[8] ZHAO H, YU G Q, YUAN M, et al. Ultrafine and highly dispersed platinum nanoparticles confined in a triazinyl-containing porous organic polymer for catalytic applications [J]. Nanoscale, 2018, 10(45): 21466-21474.
[9] AN S H, LI X W, SHANG S S, et al. One-dimensional covalent organic frameworks for the 2e-oxygen reduction reaction [J]. 2023, 62(14): e202218742.
[10] CHEN X H, LI Y Q, JIA L H, et al. N-doping and structural regularity of covalent organic frameworks (COFs) tune the catalytic activity for knoevenagel condensation reaction [J]. Journal of Solid State Chemistry, 2023, 328: 124352.
[11] WU S, ZHANG Y, JIANG H Y, et al. Anchoring Pd(OAc)2 on amide-bonded covalent organic frameworks: an efficient heterogeneous Pd@OC-MA catalyst for Suzuki-Miyaura coupling reactions in water [J]. Tetrahedron, 2020, 76(48): 131664.
[12] LIU N, WU F, XU J, et al. Metal-free Knoevenagel condensation catalyzed by mesoporous and nitrogen-distribution-tunable supported carbon nitride [J]. Research on Chemical Intermediates, 2022, 48(5): 1989-2006.
[13] MACHADO T F, VALENTE A J M, SILVA SERRA M E, et al. Diazo-coupled porous organic polymers as efficient catalysts for metal-free Henry and Knoevenagel reactions [J]. Microporous and Mesoporous Materials, 2023, 355: 112561.
[14] BISBEY R P, DICHTEL W R. Covalent organic frameworks as a platform for multidimensional polymerization [J]. ACS Central Science, 2017, 3(6): 533-543.
[15] BISWAL B P, CHANDRA S, KANDAMBETH S, et al. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks [J]. Journal of the American Chemical Society, 2013, 135(14): 5328-31.
[16] DAS G, BALAJI SHINDE D, KANDAMBETH S, et al. Mechanosynthesis of imine, β-ketoenamine, and hydrogen-bonded imine-linked covalent organic frameworks using liquid-assisted grinding [J]. Chemical Communications, 2014, 50(84): 12615-12618.
[17] PENG Y W,XU G D,HU Z G,et al. Mechanoassis-ted synthesis of sulfonated covalent organic fFrameworks with high intrinsic proton conductivity [J]. ACS Applied Materials & Interfaces, 2016, 8(28): 18505-18512.
[18] 吕杰琼, 谢晖, 高永平, 等. 富氮类共价有机骨架材料COF-MC催化Knoevenagel缩合反应的应用 [J]. 化工进展, 2022, 41(6): 2993-3001.
[19] 高文秀, 吕杰琼, 谢晖, 等. 酸、碱催化Knoevenagel缩合反应机理的研究 [J]. 山东化工, 2021, 50(1): 105-107.

相似文献/References:

[1]朱 芬,张新敏,佘 潇,等.氮掺杂石墨烯凝胶的制备与表征[J].武汉工程大学学报,2016,38(3):259.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 011]
 ZHU Fen,ZHANG Xinmin,SHE Xiao,et al.Preparation and Characterization of Nitrogen-Doped Grapheme Hydrogel[J].Journal of Wuhan Institute of Technology,2016,38(03):259.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 011]
[2]江学良,郜艳荣,张玉婷,等.微波辐照法制备氮掺杂二氧化钛空心球及其光催化性能[J].武汉工程大学学报,2018,40(06):627.[doi:10. 3969/j. issn. 1674?2869. 2018. 06. 008]
 JIANG Xueliang,GAO Yanrong,ZHANG Yuting,et al.Preparation of Nitrogen Doped TiO2 Hollow Spheres by Microwave Irradiation and Its Photocatalysis Property[J].Journal of Wuhan Institute of Technology,2018,40(03):627.[doi:10. 3969/j. issn. 1674?2869. 2018. 06. 008]
[3]柯 源,胡 稳,方 晗,等.高氮含量多孔碳的制备、热处理及氧还原性能[J].武汉工程大学学报,2021,43(06):626.[doi:10.19843/j.cnki.CN42-1779/TQ.202011019]
 KE Yuan,HU Wen,FANG Han,et al.Preparation,Heat-Treatment and Oxygen Reduction Performance of Porous Carbon with High Nitrogen Content[J].Journal of Wuhan Institute of Technology,2021,43(03):626.[doi:10.19843/j.cnki.CN42-1779/TQ.202011019]
[4]刘 璐,胡宇琴,刘钰铃,等.钠盐改性的N掺杂多孔碳的制备及其电容性能[J].武汉工程大学学报,2023,45(06):647.[doi:10.19843/j.cnki.CN42-1779/TQ.202208019]
 LIU Lu,HU Yuqin,LIU Yuling,et al.Fabrication of N-Doped Porous Carbon Modified by Sodium Salt andInvestigation on Its Capacitive Properties[J].Journal of Wuhan Institute of Technology,2023,45(03):647.[doi:10.19843/j.cnki.CN42-1779/TQ.202208019]
[5]黄玉娇,张汉泉*,余 洪,等. 氮掺杂活性炭的制备及应用研究进展 [J].武汉工程大学学报,2024,46(06):649.[doi:10.19843/j.cnki.CN42-1779/TQ.202205006]
 HUANG Yujiao,ZHANG Hanquan*,YU Hong,et al.Research progress in preparation and application of nitrogen-doped activated carbon[J].Journal of Wuhan Institute of Technology,2024,46(03):649.[doi:10.19843/j.cnki.CN42-1779/TQ.202205006]

备注/Memo

备注/Memo:
收稿日期:2025-02-18
基金项目:国家自然科学基金(51203127)
作者简介:韩 冰,硕士研究生。Email:1575605905@qq.com
*通信作者:余响林,博士,教授。Email:yxlin2002@163.com
引文格式:韩冰,梁恩,张诣,等. 新型富氮多孔有机材料的合成及催化性能研究[J]. 武汉工程大学学报,2025,47(3):267-273.
更新日期/Last Update: 2025-07-08