[1] RECK I M, BAPTISTA A T A, PAIX?O R M, et al. Application of magnetic coagulant based on fractionated protein of Moringa oleifera Lam. seeds for aqueous solutions treatment containing synthetic dyes [J]. Environmental Science and Pollution Research, 2020, 27(11): 12192-12201.
[2] KADIRVELU K, KARTHIKA C, VENNILAMANI N, et al. Activated carbon from industrial solid waste as an adsorbent for the removal of Rhodamine-B from aqueous solution: kinetic and equilibrium studies [J]. Chemosphere, 2005, 60(8): 1009-1017.
[3] ZHANG Y Z, ZHAO M W, CHENG Q, et al. Research progress of adsorption and removal of heavy metals by chitosan and its derivatives: a review [J]. Chemosphere, 2021, 279: 130927.
[4] ZHANG B H, FANG C X, NING J, et al. Unusual aliovalent Cd doped γ-Bi2MoO6 nanomaterial for efficient photocatalytic degradation of sulfamethoxazole and rhodamine B under visible light irradiation [J]. Carbon Neutralization, 2023, 2(6): 646-660.
[5] SARAVANAN S,CAROLIN C F, KUMAR P S, et al. Biodegradation of textile dye Rhodamine-B by Brevundimonas diminuta and screening of their breakdown metabolites [J]. Chemosphere, 2022, 308: 136266.
[6] ZHANG X H, MA D Z, ZHU X B. Insights into bicarbonate enhanced heterogeneous Fenton catalyzed by Co/Cu/zeolite for degradation of rhodamine B [J]. Environmental Engineering Research, 2024, 29(1): 230095.
[7] GREENLEE L F, LAWLER D F, FREEMAN B D, et al. Reverse osmosis desalination: water sources, technology, and today’s challenges[J]. Water Research, 2009, 43(9): 2317-2348.
[8] LI P W, ZHAO T, ZHAO Z H, et al. Biochar derived from chinese herb medicine residues for rhodamine B dye adsorption[J]. ACS Omega,2023,8(5):4813-4825.
[9] 刘艳芳, 崔龙鹏, 侯吉礼. 煤气化飞灰合成有序介孔纳米氧化硅及其吸附罗丹明 B 的性能 [J]. 煤炭学报, 2022, 47(11): 3991-3998.
[10] YANG X D, SHAO X Q, TONG J, et al. Removal of aqueous eriochrome blue-black R by novel Na-bentonite/hickory biochar composites [J]. Separation and Purification Technology, 2023, 311: 123209.
[11] ZHAO C, WANG J S, CHEN X, et al. Bifunctional Bi12O17Cl2/MIL-100(Fe) composites toward photocatalytic Cr(VI) sequestration and activation of persulfate for bisphenol A degradation [J]. Science of The Total Environment, 2021, 752: 141901.
[12 CHAIRUNGSRI W, SUBKOMKAEW A, KIJJANAPANICH P, et al. Direct dye wastewater photocatalysis using immobilized titanium dioxide on fixed substrate [J]. Chemosphere,2022,286: 131762.
[13] CHEN D, ZHENG Y T, HUANG N Y, et al. Metal-organic framework composites for photocatalysis [J]. EnergyChem, 2024, 6(1): 100115.
[14] CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851.
[15] AHMADIJOKANI F, MOLAVI H, REZAKAZEMI M, et al. UiO-66 metal-organic frameworks in water treatment: a critical review [J]. Progress in Materials Science, 2022, 125: 100904.
[16] 张金辉, 张焕, 朱新锋, 等. UiO-66复合材料用于典型有机污染物吸附和光催化氧化的研究进展 [J]. 化工进展, 2023, 42(1): 445-456.
[17] CAI G, JIANG H L. A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability[J]. Angewandte Chemie International Edition, 2017, 56(2): 563-567.
[18] WU X P, GAGLIARDI L, TRUHLAR D G. Cerium metal-organic framework for photocatalysis [J]. Journal of the American Chemical Society, 2018, 140(25): 7904-7912.
[19] LIU C, SHI Y Z, CHEN Q, et al. The defect-modulated UiO-66(Ce) MOFs for enhancing photocatalytic selective organic oxidations [J]. Rare Metals, 2025,44(4):2462-2473.
[20] ZHANG Y F, WANG Q, XUE D X, et al. Single-crystal synthesis and diverse topologies of hexanu-clear CeIV-based metal-organic frameworks [J]. Inorganic Chemistry, 2020, 59(16): 11233-11237.
[21] HE H H, YUAN J P, CAI P Y, et al. Yolk-shell and hollow Zr/Ce-UiO-66 for manipulating selectivity in tandem reactions and photoreactions [J]. Journal of the American Chemical Society,2023,145(31): 17164-17175.