|本期目录/Table of Contents|

[1]刘金思成,余 杰,朱晓东,等.基于氧代苯核心不对称非稠环电子受体材料的制备及其光伏性能[J].武汉工程大学学报,2025,47(03):282-290.[doi:10.19843/j.cnki.CN42-1779/TQ.202502007]
 LIU Jinsicheng,YU Jie,ZHU Xiaodong,et al.Preparation and photovoltaic performance of asymmetric non-fused-ring electron acceptor material based on oxybenzene core[J].Journal of Wuhan Institute of Technology,2025,47(03):282-290.[doi:10.19843/j.cnki.CN42-1779/TQ.202502007]
点击复制

基于氧代苯核心不对称非稠环电子受体材料的制备及其光伏性能
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年03期
页码:
282-290
栏目:
现代大化工
出版日期:
2025-06-30

文章信息/Info

Title:
Preparation and photovoltaic performance of asymmetric non-fused-ring electron acceptor material based on oxybenzene core
文章编号:
1674 - 2869(2025)03 - 0282 - 09
作者:
武汉工程大学材料科学与工程学院,湖北省光电与新能源材料工程技术研究中心,湖北 武汉 430205
Author(s):
School of Materials Science and Engineering,Wuhan Institute of Technology,Hubei Engineering Technology Research Center of Optoelectronics and New Energy,Wuhan 430205,China
关键词:
Keywords:
分类号:
D430.50
DOI:
10.19843/j.cnki.CN42-1779/TQ.202502007
文献标志码:
A
摘要:
有机太阳能电池(OSCs)中,非稠环电子受体因结构简单、易于修饰和成本低廉受到广泛关注。以氧代苯为核心合成了一种非稠环电子受体(2,5-双((2-丁辛基)氧基)-3-氟-6-甲氧基-1,4-亚苯基)双(4,4-双(2-乙基己基)-4H-环戊二烯并(2,1-b:双(5,6-二氯-3-氧代-2,3-二氢-1H-茚-2,1-二亚基))二丙二腈(L-3)。通过分子工程手段,在苯环上引入具有不同缺电子能力的氟原子和氧原子,并结合π桥和端基优化,制备的L-3分子可实现550~750 nm的中等带隙吸收和较深的最高占据分子轨道(HOMO)能级(-5.71 eV)。与新型聚合物给体材料PBTTzE共混后,能量转化效率为5.87%,开路电压可达到0.96 V,短路电流密度和填充因子分别为12.81 mA·cm-2和47.42%。
Abstract:
In organic solar cells (OSCs),non-fused-ring small molecule acceptors have garnered significant attention for their simple structures, easy modification and low cost. The non-fused-ring electron acceptor, (2,5-bis((2-butyloctyl)oxy)-3-fluoro-6-methoxy-1,4-phenylene)bis(4,4-bis(2-ethylhexyl)-4H-cyclopentadienyl(2,1-b:bis(5,6-dichloro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (L-3), was synthesized with oxybenzene as its core. By means of molecular engineering,L-3 was prepared by introducing fluorine and oxygen atoms with different electron-withdrawing capabilities onto the benzene ring and combining with the optimization of p-bridges and end-groups, which could achieve a medium-bandgap absorption of 550-750 nm and a deeper highest occupied molecular orbit (HOMO) energy level of -5.71 eV. When blended with the new polymer donor material PBTTzE, its power conversion efficiency is 5.87%, with an open-circuit voltage of 0.96 V, a short-circuit current density of 12.81 mA·cm-2, and a fill factor of 47.42%.

参考文献/References:

[1] DING P F, YANG D B,YANG S C,et al. Stability of organic solar cells:toward commercial applications [J]. Chemical Society Reviews,2024,53(5):2350-2387.
[2] PARK S,KIM T,YOON S,et al. Progress in materials,solution processes,and long-term stability for large-area organic photovoltaics [J]. Advanced Materials,2020,32(51):2002217.
[3] KIM T,KIM J H,KANG T E,et al. Flexible,highly efficient all-polymer solar cells [J]. Nature Communications,2015,6:8547.
[4] JIANG P C,LIU Y H,SONG J S,et al. Emergence of low-cost and high-performance nonfused ring electron acceptors [J]. Accounts of Chemical Research,2024,57(23):3419-3432.
[5] JIANG Y Y,SUN S M,XU R J,et al. Non-fullerene acceptor with asymmetric structure and phenyl-substituted alkyl side chain for 20.2% efficiency organic solar cells [J]. Nature Energy,2024,9(8):975-986.
[6] WANG J Y, ZHAN X W. Rylene diimide electron acceptors for organic solar cells [J]. Trends in Chemistry,2019,1(9):869-881.
[7] YUAN J, ZHANG Y Q, ZHOU L Y, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core [J]. Joule,2019,3(4):1140-1151.
[8] ZHAN L L, LI S X, ZHANG S H, et al. Enhanced charge transfer between fullerene and non-fullerene acceptors enables highly efficient ternary organic solar cells [J]. ACS Applied Materials & Interfaces,2018,10(49):42444-42452.
[9] LI S X, ZHAN L L, LIU F, et al. An unfused-core-based nonfullerene acceptor enables high-efficiency organic solar cells with excellent morphological stability at high temperatures [J]. Advanced Materials,2018,30(6):1705208.
[10] LIU Y H,ZHANG Z,FENG S Y,et al. Exploiting noncovalently conformational locking as a design strategy for high performance fused-ring electron acceptor used in polymer solar cells [J]. Journal of the American Chemical Society,2017,139(9):3356-3359.
[11] LI S X, ZHAN L L, LAU T K,et al. Near-infrared nonfullerene acceptors based on benzobis(thiazole) unit for efficient organic solar cells with low energy loss [J]. Small Methods,2019,3(12):1900531.
[12] LIU Z X, YU Z P, SHEN Z Q, et al. Molecular insights of exceptionally photostable electron acceptors for organic photovoltaics [J]. Nature Communications,2021,12:3049.
[13] SHEN Q, HE C L, LI S X, et al. Design of non-fused ring acceptors toward high-performance,stable,and low-cost organic photovoltaics [J]. Accounts of Materials Research,2022,3(6):644-657.
[14] GU X B,ZHANG X,HUANG H. The revival of 4H-cyclopenta[2,1-b:3,4-b′]dithiophene (CPDT) driven by low-cost and high-performance nonfused-ring electron acceptors [J]. Journal of Materials Chemistry A,2024,12(29):17973-17991.
[15] ZHENG R,GUO Q X,HAO D,et al. Naphthalene core-based noncovalently fused-ring electron acceptors:effects of linkage positions on photovoltaic performances [J]. Journal of Materials Chemistry C,2019,7(48):15141-15147.
[16] HOU R, LI M, MA X Q, et al. Noncovalently fused-ring electron acceptors with C2v symmetry for regulating the morphology of organic solar cells [J]. ACS Applied Materials & Interfaces,2020,12(41):46220-46230.
[17] LU H, WANG X D, WANG H, et al. High-performance nonfused ring electron acceptor with a steric hindrance induced planar molecular backbone [J]. Science China Chemistry,2022,65(3):594-601.
[18] WANG Y Z, LIU Z W, CUI X Y, et al. Small molecule acceptors with a ladder-like core for high-performance organic solar cells with low non-radiative energy losses [J]. Journal of Materials Chemistry A,2020,8(25):12495-12501.
[19] LUO D, JIANG Z Y, SHAN C W, et al. Simultaneous tuning of alkyl chains and end groups in non-fused ring electron acceptors for efficient and stable organic solar cells [J]. ACS Applied Materials & Interfaces,2022,14(21):24374-24385.
[20] ZHOU X,PANG S T,WU B Q,et al. Noncovalent interactions induced by fluorination of the central core improve the photovoltaic performance of A-D-A′-D-A-type nonfused ring acceptors [J]. ACS Applied Energy Materials,2022,5(6):7710-7718.
[21] WU Z H, CHEN Y C, ZHANG L J, et al. A ligand-free direct heteroarylation approach for benzodithiophenedione-based simple small molecular acceptors toward high efficiency polymer solar cells [J]. Journal of Materials Chemistry A,2021,9(6):3314-3321.
[22] ZHANG X, LI C Q, QIN L Q, et al. Side-chain engineering for enhancing the molecular rigidity and photovoltaic performance of noncovalently fused‐ring electron acceptors [J]. Angewandte Chemie(International Edition),2021,60(32):17720-17725.
[23] ZHENG X M, JIANG X L, LIU W L, et al. Boosting organic solar cells to over 18% efficiency through dipole-dipole interactions in fluorinated nonfused ring electron acceptors [J]. Angewandte Chemie(International Edition),2024,63(46):e202412854.
[24] ZENG R,ZHANG M,WANG X D,et al. Achieving 19% efficiency in non-fused ring electron acceptor solar cells via solubility control of donor and acceptor crystallization [J]. Nature Energy,2024,9(9):1117-1128.
[25] ZHU X D,LEI Y C,GAO J H,et al. A low-cost wide bandgap polymer based on carboxylate substituted thiazole enables efficient organic solar cells with remarkable batch-to-batch reproducibility [J]. Science China Chemistry,2025,68(2):733-744.
[26] 冯继宝,朱晓东,高建宏,等. 基于三嗪缺电子单元宽带隙聚合物给体材料的合成及光伏性能[J].武汉工程大学学报,2024,46(2):148-154,236.
[27] MA W X, HE X Y, CHEN T Y,et al. Near-infrared non-fused electron acceptors for efficient organic photovoltaics [J]. Chinese Chemical Letters,2024,35(4):109099.
[28] ZHANG X , WEI Y N, LIU X Z, et al. Enhancing photovoltaic performances of naphthalene-based unfused-ring electron acceptors upon regioisomerization [J]. Solar RRL,2021,5(5):2100094.


相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2025-02-07
基金项目:国家自然科学基金(52003209)
作者简介:刘金思成,硕士研究生。Email:29011760@qq.com
*通信作者:高建宏,博士,副教授。Email:gaojianhong26@wit.edu.cn
引文格式:刘金思成,余杰,朱晓东,等.基于氧代苯核心不对称非稠环电子受体材料的制备及其光伏性能[J]. 武汉工程大学学报,2025,47(3):282-290.
更新日期/Last Update: 2025-07-08