|本期目录/Table of Contents|

[1]丁寅莹,严文煜,罗晓刚*. 水样中邻苯二酚和间苯二酚的辣根过氧化物酶比色试纸测定 [J].武汉工程大学学报,2025,47(04):355-362.[doi:10.19843/j.cnki.CN42-1779/TQ.202303032]
 DING Yinying,YAN Wenyu,LUO Xiaogang*. Horseradish peroxidase-immobilized colorimetric test strips for detection of catechol and resorcinol in water samples [J].Journal of Wuhan Institute of Technology,2025,47(04):355-362.[doi:10.19843/j.cnki.CN42-1779/TQ.202303032]
点击复制

水样中邻苯二酚和间苯二酚的辣根过氧化物酶比色试纸测定
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年04期
页码:
355-362
栏目:
现代大化工
出版日期:
2025-08-29

文章信息/Info

Title:
Horseradish peroxidase-immobilized colorimetric test strips for detection of catechol and resorcinol in water samples
文章编号:
1674 - 2869(2025)04 - 0355- 08
作者:
1.武汉工程大学化工与制药学院,绿色化工过程教育部重点实验室(武汉工程大学),新型反应器与绿色化学工艺湖北省重点实验室(武汉工程大学),湖北 武汉 430205;
2.湖北三峡实验室,湖北 宜昌 443008
Author(s):
1. Key Laboratory for Green Chemical Process of Ministry of Education(Wuhan Institute of Technology), Hubei Key Laboratory of Novel Reactor and Green Chemical Technology(Wuhan Institute of Technology), School of Chemical Engineering and
Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; 2. Hubei Three Gorges Laboratory, Yichang 443008, China
关键词:
Keywords:
分类号:
O636.1+1
DOI:
10.19843/j.cnki.CN42-1779/TQ.202303032
文献标志码:
A
摘要:
开发现场高效的检测水体中邻苯二酚和间苯二酚的平台具有重要意义。以纤维素的溶解再生成膜为基础,化学修饰后引入活性生物酶,制备成具有生物活性的纤维素膜基比色试纸,以探究其在水生环境中的有毒有害物质的及时检测。以纤维素膜为载体,高碘酸钠氧化法成功将纤维素结构C2、C3位的羟基氧化为醛基,得到氧化纤维素膜。通过席夫碱反应将辣根过氧化物酶成功固定在羧基化纤维素膜表面。通过扫描电镜展现了纤维素纯膜、氧化纤维素膜、载酶纤维素膜的表面形貌与特征。能谱扫描仪、红外光谱等表征分析了三种膜的表面元素构成和官能团类型。设计了一系列应用实验,包括实验条件的优化、标准溶液检测、检测时间的探究等,系统研究了纤维素膜基比色试纸对环境水样中邻苯二酚和间苯二酚的检测性能。实验证明本项工作制备的纤维素膜基比色试纸对邻苯二酚和间苯二酚的最低检测限分别为0.45、0.09?mmol/L,具有较好的稳定性、便利的及时检测性,在生物传感和环境监测领域具有广阔的应用前景。
Abstract:
Developing an efficient on-site detection platform for catechol and resorcinol in water is crucial for environmental monitoring. Using dissolution and regeneration of cellulose membranes, we introduced active biological enzymes after chemical modification to prepare enzyme-immobilized cellulose membrane-based colorimetric test strips for rapid detection of toxic substances in aquatic environments. The cellulose membrane was functionalized by oxidizing the hydroxyl groups at the C2 and C3 positions to aldehyde groups using sodium periodate oxidation, yielding oxidized cellulose membranes. Horseradish peroxidase (HRP) was then immobilized on the carboxylated cellulose membrane surface via Schiff base reaction. Scanning electron microscopy (SEM) revealed the surface morphology of native cellulose, oxidized cellulose, and HRP-immobilized membranes. Energy-dispersive X-ray spectroscopy (EDS) and Fourier-transform infrared spectroscopy (FT-IR) characterized the elemental composition and functional groups of these membranes. We conducted systematic experiments including optimization of detection conditions, calibration with standard solutions, and response time evaluation. The test strips demonstrated detection limits of 0.45 mmol/L for catechol and 0.09 mmol/L for resorcinol, with excellent stability and rapid response, showing great potential for biosensing and environmental monitoring applications.

参考文献/References:

[1] KIANI A, RAOOF J B, NEMATOLLAHI D, et al. Electrochemical study of catechol in the presence of dibuthylamine and diethylamine in aqueous media: part 1. electrochemical investigation [J]. Electro-analysis, 2005, 17(19): 1755-1760.
[2] ZHANG Y L, XIAO S X, XIE J L, et al. Simultaneous electrochemical determination of catechol and hydroquinone based on graphene-TiO2 nanocomposite modified glassy carbon electrode [J]. Sensors and Actuators B: Chemical, 2014, 204: 102-108.
[3] LAM S M, SIN J C, ABDULLAH A Z, et al. Photocatalytic degradation of resorcinol, an endocrine disrupter, by TiO2 and ZnO suspensions [J]. Environmental Technology, 2013, 34(9): 1097-1106.
[4] JUNG C T, WICKETT R R, DESAI P B, et al. In vitro and in vivo percutaneous absorption of catechol [J]. Food and Chemical Toxicology, 2003, 41(6): 885-895.
[5] WANG H L, HU Q Q, MENG Y, et al. Efficient detection of hazardous catechol and hydroquinone with MOF-rGO modified carbon paste electrode [J]. Journal of Hazardous Materials, 2018, 353: 151-157.
[6] YUAN X L, YUAN D S, ZENG F L, et al. Preparation of graphitic mesoporous carbon for the simultaneous detection of hydroquinone and catechol [J]. Applied Catalysis B: Environmental, 2013, 129: 367-374.
[7] GAUTAM V, SINGH K P, YADAV V L. Multi-component template effects-preparation of highly porous polyaniline nanorods using crude lemon juice and its application for selective detection of catechol [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2256-2268.
[8] YE Q H, YAN F Y, KONG D P, et al. Constructing a fluorescent probe for specific detection of catechol based on 4-carboxyphenylboronic acid-functionalized carbon dots [J]. Sensors and Actuators B: Chemical, 2017, 250: 712-720.
[9] LI Z M, XI Y C, ZHAO A Q, et al. Cobalt-imidazole metal-organic framework loaded with luminol for paper-based chemiluminescence detection of catechol with use of a smartphone [J]. Analytical and Bioanalytical Chemistry, 2021, 413(13): 3541-3550.
[10] RAHEMI V,TRASHIN S,HAFIDEDDINE Z, et al. Enzymatic sensor for phenols based on titanium dioxide generating surface confined ROS after treatment with H2O2 [J]. Sensors and Actuators B: Chemical, 2019, 283: 343-348.
[11] LIU L, ANWAR S, DING H Z, et al. Electrochemical sensor based on F, N-doped carbon dots decorated laccase for detection of catechol [J]. Journal of Electroanalytical Chemistry, 2019, 840: 84-92.
[12] CAMARGO J R, BACCARIN M, RAYMUNDO-PEREIRA P A, et al. Electrochemical biosensor made with tyrosinase immobilized in a matrix of nanodiamonds and potato starch for detecting phenolic compounds [J]. Analytica Chimica Acta, 2018, 1034: 137-143.
[13] ARCIULI M, PALAZZO G, GALLONE A, et al. Bioactive paper platform for colorimetric phenols detection [J]. Sensors and Actuators B: Chemical, 2013, 186: 557-562.
[14] ALKASIR R S J, ORNATSKA M, ANDREESCU S. Colorimetric paper bioassay for the detection of phenolic compounds [J]. Analytical Chemistry, 2012, 84(22): 9729-9737.
[15] CAO R, GUAN L Y, LI M S, et al. A zero-step functionalization on paper-based biosensing platform for covalent biomolecule immobilization [J]. Sensing and Bio-Sensing Research, 2015, 6: 13-18.
[16] KAVRUK M, ?ZALP V C, ?KTEM H A. Portable bioactive paper-based sensor for quantification of pesticides [J]. Journal of Analytical Methods in Chemistry, 2013, 2013(1): 932946.
[17] ROY D, SEMSARILAR M, GUTHRIE J T, et al. Cellulose modification by polymer grafting: a review [J]. Chemical Society Reviews, 2009, 38(7): 2046-2064.
[18] ZHANG H, LUAN Q, LI Y, et al. Fabrication of highly porous, functional cellulose-based microspheres for potential enzyme carriers [J]. International Journal of Biological Macromolecules, 2022, 199: 61-68.
[19] TU H, ZHU M X, DUAN B, et al. Recent progress in high-strength and robust regenerated cellulose materials [J]. Advanced Materials, 2021, 33(28): 2000682.
[20] HUANG J, TAO C G, AN Q, et al. 3D-ordered macroporous poly(ionic liquid) films as multifunctional materials [J]. Chemical Communications, 2010, 46(6): 967-969.
[21] LUO X G, ZHANG H, CAO Z N, et al. A simple route to develop transparent doxorubicin-loaded nanodiamonds/cellulose nanocomposite membranes as potential wound dressings [J]. Carbohydrate Polymers, 2016, 143: 231-238.
[22] LARSSON P A, GIM?KER M, W?GBERG L. The influence of periodate oxidation on the moisture sorptivity and dimensional stability of paper [J]. Cellulose, 2008, 15(6): 837-847.
[23] DABHADE A, JAYARAMAN S, PARAMASIVAN B. Colorimetric paper bioassay by horseradish peroxidase for the detection of catechol and resorcinol in aqueous samples [J]. Preparative Biochemistry & Biotechnology, 2020, 50(8): 849-856.
[24] LUO X G, XIA J, JIANG X Y, et al. Cellulose-based strips designed based on a sensitive enzyme colorimetric assay for the low concentration of glucose detection [J]. Analytical Chemistry, 2019, 91(24): 15461-15468.
[25] CHENG Y M, LU J T, LIU S L, et al. The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films [J]. Carbohydrate Polymers, 2014,107:57-64.
[26] LUO X G, LEI X J, CAI N, et al. Removal of heavy metal ions from water by magnetic cellulose-based beads with embedded chemically modified magnetite nanoparticles and activated carbon [J]. ACS Sustainable Chemistry & Engineering, 2016, 4(7): 3960-3969.
[27] VALDERRAMA B, AYALA M, VAZQUEZ-DUHALT R. Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes [J]. Chemistry & Biology, 2002, 9(5): 555-565.


相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-03-25
基金项目:国家自然科学基金(51773159)
作者简介:丁寅莹,硕士研究生。Email:876679589@qq.com
*通信作者:罗晓刚,博士,教授。Email:xgluo0310@hotmail.com
引文格式:丁寅莹,严文煜,罗晓刚. 水样中邻苯二酚和间苯二酚的辣根过氧化物酶比色试纸测定[J]. 武汉工程大学学报,2025,47(4):355-362.
更新日期/Last Update: 2025-08-29