|本期目录/Table of Contents|

[1]余荣光,裴志杰,李浩勋,等. 螯合态中微量元素肥料的制备及应用研究进展 [J].武汉工程大学学报,2025,47(04):376-384.[doi:10.19843/j.cnki.CN42-1779/TQ. 202501017]
 YU Rongguang,PEI Zhijie,LI Haoxun,et al.Research progress in preparation and application of chelated medium and trace elements fertilizers[J].Journal of Wuhan Institute of Technology,2025,47(04):376-384.[doi:10.19843/j.cnki.CN42-1779/TQ. 202501017]
点击复制

螯合态中微量元素肥料的制备及应用研究进展
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年04期
页码:
376-384
栏目:
现代大化工
出版日期:
2025-08-29

文章信息/Info

Title:
Research progress in preparation and application of chelated medium and trace elements fertilizers
文章编号:
1674 - 2869(2025)04 - 0376 - 09
作者:
1.武汉工程大学化工与制药学院,湖北 武汉 430205;
2.国投新疆罗布泊钾盐有限责任公司,新疆 哈密 839000
Author(s):
1. School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China;
2. State Development Investment Corporation Xinjiang Luobupo Potash Co. , Ltd , Hami 839000 , China
关键词:
Keywords:
分类号:
S143.7+.2
DOI:
10.19843/j.cnki.CN42-1779/TQ. 202501017
文献标志码:
A
摘要:
在实际生产中,植物正常所必需的中微量元素,如铁、锌、锰、铜、硼、钙、镁硅等,通常以无机盐形式被直接施入土壤中而容易被固定,导致其难以被植物吸收利用;而螯合态中微量元素肥料通过螯合剂与中微量元素形成稳定络合物,可增强元素在土壤中的活性与可吸收性,能显著提高利用率,对推动农业“高产、优质、绿色”发展及实现可持续农业具有重要意义。系统阐述了三类主流螯合剂制备螯合态肥料的研究现状:(1)天然大分子类,虽螯合性较弱,但富含活性物质且环境友好,可改善土壤理化性质并促进作物生长;(2)有机酸类,螯合稳定性适中且易降解,能提升作物抗逆性与果实品质,其中氨基酸螯合肥还可协同补充氮源;(3)化学合成类,螯合能力强,IDHA因生物降解性优异成为EDTA的绿色替代者,但EDTA存在环境残留风险。在实际应用中,天然大分子螯合率低,有机酸类受土壤pH影响显著,化学合成类部分产品成本高且环境风险突出,同时多元素协同螯合技术不成熟、施用条件苛刻。建议聚焦新型高效螯合剂研发,优化多元素协同螯合工艺;通过跨领域合作构建智能施肥系统,实现精准施用,以降低成本并减少环境影响。
Abstract:
Essential medium and trace elements (MTEs) - including Fe, Zn, Mn, Cu, B, Ca, Mg, and Si -?often become immobilized?when applied to soils as inorganic salts,?severely limiting?plant uptake.?In contrast, chelated MTE fertilizers form stable complexes through?coordinated binding with chelating agents,?thereby?enhancing their mobility in soil and bioavailability?while?significantly improving utilization rates. This technology?plays a pivotal role in advancing?"high-yield, premium-quality, and eco-friendly" agricultural practices. This review systematically evaluates?three mainstream chelator categories: (1)?Natural macromolecules, which offer modest chelation capacity?but improve soil properties through?fully biodegradable bioactive components;(2)?Organic acids?(e.g.,citrates),which provide pH-dependent?chelation stability, and enhance crop resilience,?with?amino acid variants?concurrently supplying nitrogen; (3)?Synthetic chelators, which deliver?the strongest?chelation strength,?where?IDHA?emerges as?an eco-friendly EDTA alternative?given?EDTA’s?persistence concerns. Current applications face several critical challenges: natural macromolecules suffer from low chelation efficiency; organic acids significantly depend on soil pH; synthetic alternatives often involve high costs and potential environmental hazards; and multi-nutrient co-chelating technologies remain immature, coupled with demanding application conditions. To address these issues, focused efforts on developing novel, high-efficiency chelators and optimizing multi-element co-chelating processes are recommended. Furthermore, interdisciplinary collaboration is essential to establishing intelligent fertilization systems for precise application, thereby reducing costs and minimizing environmental impacts.


参考文献/References:

[1] 郭娟. 肥料种类及其在草莓生长发育过程中的作用研究[J]. 果农之友, 2023(8): 75-79.
[2] 张海艳, 刘金梅, 范继锋, 等. 新型肥料微量元素螯合肥的研究与应用进展[J]. 蔬菜, 2024(4): 13-22.
[3] ARECHE F O, AGUILAR S V, MORE LóPEZ J M, et al. Recent and historical developments in chelated fertilizers as plant nutritional sources, their usage efficiency, and application methods [J]. Brazilian Journal of Biology, 2023, 83: e271055.
[4] 李少杰, 姬宇翔, 温学萍, 等. 双杆整枝及增施中微量元素肥料对露地樱桃番茄品质及产量的影响[J]. 园艺与种苗, 2023, 43(4): 1-2.
[5] 黄恒掌,韦广厚,罗广盘. 中微量元素肥对甘蔗产量和品质的影响试验初报[J]. 南方农业,2016,10(16): 34-35.
[6] 刘旺, 陈志良, 彭晓春, 等. 强化重金属污染土壤的螯合剂诱导植物提取研究[J]. 安徽农业科学, 2012, 40(8): 4832-4838.
[7] 郑宇琦, 许春雪, 安子怡, 等. 土壤和沉积物重金属形态分析研究进展[J/OL]. 中国无机分析化学, 2024: 1-12. (2024-02-02). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=WJFX20240131004 & dbname=CJFD&dbcode=CJFQ.
[8] 宋哲楷, 张小凯, 何锋, 等. 纳米颗粒污染土壤的健康评价研究进展[J]. 环境科学研究, 2024, 37(5): 1080-1091.
[9] 牛彦超,朱盼盼, 彦平. 螯合态中微量元素肥料现状分析及前景展望[J]. 肥料与健康,2022,49(5):6-10.
[10] 姜存仓, 肖思赟. 增效载体在新型微量元素肥料中的应用现状及前景展望[J]. 华中农业大学学报, 2023, 42(6): 26-34.
[11] KHARE S, SINGHAL A, RALLAPALLI S, et al. Bio-chelation for sustainable heavy metal remediation in municipal solid waste compost: a critical review of chelation technologies [J]. Environmental Science and Pollution Research, 2025:https://doi.org/10.1007/s11356-025-36368-6.
[12] 王志勇, 孟广银, 吴文慧, 等. 含腐殖酸改性尿素的研究与开发[J]. 化肥工业, 2017,44(4): 55-57,66.
[13] 宁望珵. 对发展螯合微肥的粗浅认识[J]. 陕西化工, 1979, 8(3): 21-23.
[14] 崔金洲,雒家其,王香玉,等. 腐殖酸螯合肥在苹果上的应用效果[J]. 农业科技与信息,2018(24):89-91.
[15] 任春梅,胡续丽,谢家义,等. 腐殖酸螯合肥在水稻生产上的效应分析[J]. 垦殖与稻作,2006,36(3):64-65.
[16] 冯华军, 胡立芳, 单丹, 等. 水体腐殖质危害及去除的研究进展[J]. 科技通报,2008,24(4):553-558.
[17] ?ENKYR J, RO?áKOVá A, FETSCH D, et al. The acidobasic and complexation properties of Humic acids: III. Study of Humic acids complexation with cadmium(II) and lead(II) by pulse anodic stripping voltammetry [J]. Toxicological & Environmental Chemistry, 1999, 68(3/4): 377-391.
[18] LIU Q, KAWAI T, INUKAI Y, et al. A lignin-derived material improves plant nutrient bioavailability and growth through its metal chelating capacity [J]. Nature Communications,2023,14: 4866.
[19] GUO X Y, ZHANG S Z, SHAN X Q. Adsorption of metal ions on lignin [J]. Journal of Hazardous Materials, 2008, 151(1): 134-142.
[20] 马立群. 碱法造纸黑液综合利用新进展[J]. 现代化工, 1998, 18(12): 15-18.
[21] 马涛, 詹怀宇, 王德汉, 等. 木质素锌肥的研制及生物试验[J]. 广东造纸, 1999(3): 11-15.
[22] 马强. 微量金属元素螯合肥制备方法研究[D]. 郑州: 郑州大学, 2018.
[23] 王美玲, 龚玉琼, 钟国清. 柠檬酸锌螯合物的合成与应用[J]. 中国饲料, 2016(16): 14-17.
[24] 王海. 柠檬酸螯合锌、铜、锰化合物的制备与表征[D]. 合肥: 合肥工业大学, 2021.
[25] 张庆, 王娟, 景立权, 等. 叶面施用不同形态锌化合物对稻米锌浓度及有效性的影响[J]. 中国水稻科学, 2015, 29(6): 610-618.
[26] 钟国清. 第三代微量元素添加剂的研究进展[J]. 饲料工业, 1996, 17(2): 23-26.
[27] 邵建华, 陆腾甲. 氨基酸微肥的生产和应用进展[J]. 磷肥与复肥, 2000, 15(4): 48-51.
[28] 韩贝贝,王宝驹,佟静,等. 氨基酸处理对水培韭菜产量、品质及风味的影响[J]. 中国蔬菜, 2022(5):74-80.
[29] 闫广轩, 曹小艳, 李百健, 等. 氨基酸螯合中微量元素肥料对新高梨品质的影响[J]. 土壤, 2009, 41(1): 139-141.
[30] 许丽娟, 梁明龙, 何觉勤, 等. 复合氨基酸微量元素螯合肥的制备及应用研究[J]. 广东化工, 2014, 41(2): 38-39, 47.
[31] 穆军. 废弃动物蛋白制备天然有机螯合肥的新工艺研究[D]. 杨凌: 西北农林科技大学, 2006.
[32] 刘音. 氨基酸螯合微肥施用效果研究[J]. 安徽农业科学, 2009, 37(14): 6403-6405.
[33] 刘德辉, 田蕾, 邵建华, 等. 氨基酸螯合微量元素肥料在小麦和后作水稻上的效果[J]. 土壤通报, 2005, 36(6): 917-920.
[34] 王连林,李翠芹,刘延波. 双螯合多微添加剂的研发与工艺创制[J]. 化肥工业,2017,44(4):12-14, 19.
[35] 展宗瑞, 李倩, 田超超, 等. 中微量元素氨基酸螯合肥在辣椒上的应用效果研究[J]. 现代农业科技, 2024(9): 63-65.
[36] 刘瑜, 郭宁, 赵凯丽, 等. 喷施氨基酸螯合钙对结球生菜产量、品质和养分吸收的影响[J]. 中国土壤与肥料, 2022(9): 123-126.
[37] SUZUKI M, URABE A, SASAKI S, et al. Development of a mugineic acid family phytosiderophore analog as an iron fertilizer [J]. Nature Communications, 2021, 12: 1558.
[38] KNEPPER T P. Synthetic chelating agents and compounds exhibiting complexing properties in the aquatic environment [J]. TrAC Trends in Analytical Chemistry, 2003, 22(10): 708-724.
[39] 张西兴, 庞世花, 高琪. 一种微量元素螯合铜盐的制备研究[J]. 广州化工, 2014, 42(17): 74-75.
[40] 张西兴, 高琪, 庞世花. 乙二胺四乙酸螯合锌盐的制备研究[J]. 磷肥与复肥, 2013, 28(6): 14-15.
[41] SHAHREKIZAD M, GHOLAMALIZADEH A A, MIR N. EDTA-coated Fe3O4 nanoparticles: a novel biocompatible fertilizer for improving agronomic traits of sunflower (Helianthus Annuus)[J]. Journal of Nanostructures, 2015, 5(2): 117-127.
[42] HE W L, SHOHAG M J I, WEI Y Y, et al. Iron concentration, bioavailability, and nutritional quality of polished rice affected by different forms of foliar iron fertilizer [J]. Food Chemistry, 2013, 141(4): 4122-4126.
[43] 国春慧, 赵爱青, 陈艳龙, 等. 锌肥种类和施用方式对小麦生育期内土壤不同形态Zn含量的影响[J]. 西北农林科技大学学报(自然科学版),2015,43(7): 185-191, 200.
[44] 韩冬芳, 王德汉, 黄培钊, 等. 不同形态镁对‘早熟5号’大白菜产量及品质的影响[J]. 园艺学报, 2010, 37(10): 1655-1660.
[45] YUAN Z W, VANBRIESEN J M. The formation of intermediates in EDTA and NTA biodegradation [J]. Environmental Engineering Science, 2006, 23(3): 533-544.
[46] 申高明, 皇改革. 可降解氨基羧酸型螯合剂在重金属污染土壤修复中的应用进展[J]. 河南科技, 2019, 38(1): 139-140.
[47] 尤洪星,朱孔杰. 绿色螯合剂亚氨基二琥珀酸的合成与性能研究进展[J]. 广东化工,2015,42(20):15, 14.
[48] KLEM-MARCINIAK E, BIEGUN M, HOFFMANN K, et al. Degree of complexation of microelement ions by biodegradable IDHA chelator in water and simulated fertilization environment [J]. Polish Journal of Chemical Technology,2023,25(4):61-66.
[49] 吴长彧,王亚权,李静. 绿色螯合剂亚氨基二琥珀酸的合成及螯合性能[J]. 化学工业与工程,2007,24(2): 121-124.
[50] BELTYUKOVA M,KURYNTSEVA P, GALITSKAYA P, et al. Biodegradation rate of EDTA and IDS and their metal complexes [J]. Horticulturae,2023,9(6): 623.
[51] 杨睿, 王子凡, 李灵芝, 等. IDHA螯合铁对基质培生菜生长及品质的影响[J]. 山西农业科学, 2022, 50(6): 816-822.
[52] 唐量, 焦永康, 李文曦, 等. 环保型螯合剂亚氨基二琥珀酸锌盐对小麦的施用效果[J]. 农业科技通讯, 2016(10): 105-108.


相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2025-01-27
基金项目:武汉工程大学第十五届研究生教育创新基金(CX2023020)
作者简介:余荣光,硕士研究生。Email:m15347225360@163.com
*通信作者:盖晓宏,高级工程师。Email:1491642451@qq.com
引文格式:余荣光, 裴志杰, 李浩勋, 等. 螯合态中微量元素肥料的制备及应用研究进展[J]. 武汉工程大学学报,2025,47(4):376-384.
更新日期/Last Update: 2025-08-29