[1] 王斌, 央宗, 黄世迅, 等. 浅析生态环境对茶叶品质的影响[J]. 南方农业, 2023, 17(19): 66-69.
[2] AHMED S, GRIFFIN T S, KRANER D, et al. Environmental factors variably impact tea secondary metabolites in the context of climate change [J]. Frontiers in Plant Science, 2019, 10: 939.
[3] WEN B, ZHANG X L, REN S, et al. Characteristics of soil nutrients, heavy metals and tea quality in different intercropping patterns [J]. Agroforestry Systems, 2020, 94(3): 963-974.
[4] DONG C X, LI F, YANG T Y, et al. Theanine transporters identified in tea plants (Camellia sinensis L.) [J]. The Plant Journal, 2020, 101(1): 57-70.
[5] JIA X L, WANG Y H, ZHANG Q, et al. Reasonable deep application of sheep manure fertilizer to alleviate soil acidification to improve tea yield and quality [J]. Frontiers in Plant Science, 2023, 14: 1179960.
[6] 2024年中国茶产业市场前景预测研究报告 [EB/OL]. (2024-04-19)[2025-04-13].https://www.163.com/dy/article/J04J4C2705198SOQ.html.
[7] DE ANDRADE ARRUDA FERNANDES I, MACIEL G M, BORTOLINI D G, et al. The bitter side of teas: pesticide residues and their impact on human health [J]. Food and Chemical Toxicology, 2023, 179: 113955.
[8] WANG Z T, GENG Y B, LIANG T. Optimization of reduced chemical fertilizer use in tea gardens based on the assessment of related environmental and economic benefits [J]. Science of the Total Environment, 2020, 713: 136439.
[9] 张玥, 胡雲飞, 王树茂, 等. 茶园年限对根际土壤真菌群落结构及多样性的影响[J]. 应用与环境生物学报, 2018, 24(5): 972-977.
[10] 中国古茶树资源状况白皮书(2024).[EB/OL]. (2025-02-27)[2025-02-27].https://www.vzkoo.com/document/2024053195d23c935a6a96259e938fa9.html.
[11] LI P D, ZHU Z R, ZHANG Y Z, et al. The phyllosphere microbiome shifts toward combating melanose pathogen [J]. Microbiome, 2022, 10(1): 56.
[12] 岑浴. 多粘类芽孢杆菌在茶叶上的定殖及其对叶际细菌群落的影响[D]. 石家庄: 河北科技大学, 2016.
[13] DING K, LV W Y, REN H Z, et al. Small world but large differences: cultivar-specific secondary metabolite-mediated phyllosphere fungal homeostasis in tea plant (Camellia sinensis) [J]. Plant and Soil, 2024, 502(1): 725-743.
[14] XU P, FAN X Y, MAO Y X, et a l. Temporal metabolite responsiveness of microbiota in the tea plant phyllosphere promotes continuous suppression of fungal pathogens [J]. Journal of Advanced Research, 2022, 39: 49-60.
[15] XU P, STIRLING E, XIE H T, et al. Continental scale deciphering of microbiome networks untangles the phyllosphere homeostasis in tea plant [J]. Journal of Advanced Research, 2023, 44: 13-22.
[16] ASHIHARA H. Occurrence, biosynthesis and metabolism of theanine (γ-glutamyl-L-ethylamide) in plants: a comprehensive review [J]. Natural Product Communications, 2015, 10(5): 803-810.
[17] DOU Q P. Tea in health and disease [J]. Nutrients, 2019, 11(4): 929.
[18] 张华琳, 王科翰, 陈雪冰, 等. 茶树内生菌的研究进展[J]. 农业技术与装备, 2022(2): 9-11.
[19] 汪立群, 颜小梅, 郭小双, 等. 紫娟、云抗10号两个茶树品种内生菌多样性研究[J]. 安徽农业大学学报, 2016, 43(1): 1-5.
[20] 游见明. 茶树中内生菌的动态分布[J]. 广西植物, 2008, 28(1): 82-85.
[21] 王桥美, 严亮, 杨瑞娟, 等. 普洱地区茶叶内生细菌与根际土壤细菌群落结构分析[J]. 微生物学报, 2022, 62(2): 703-714.
[22] 张婉婷, 张灵枝. 茶树内生真菌的研究进展[J]. 中国茶叶加工, 2011(4): 32-36.
[23] 陈晖奇. 茶树内生真菌的初步研究[D]. 福州: 福建师范大学, 2007.
[24] WU Z Z, SU Q Q, CUI Y C, et al. Temporal and spatial pattern of endophytic fungi diversity of Camellia sinensis (cv. Shu Cha Zao) [J]. BMC Microbiology, 2020, 20(1): 270.
[25] WIN P M, MATSUMURA E, FUKUDA K. Effects of pesticides on the diversity of endophytic fungi in tea plants [J]. Microbial Ecology, 2021, 82(1): 62-72.
[26] CHANG M M, MA J Y, SUN Y, et al. Role of endophytic bacteria in the remobilization of leaf nitrogen mediated by CsEGGT in tea plants (Camellia sinensis L.) [J]. Journal of Agricultural and Food Chemistry, 2023, 71(13): 5208-5218.
[27] 高秀兵, 陈娟, 郭灿, 等. 茶树丛枝菌根真菌的研究进展[J]. 贵州农业科学, 2011, 39(9):122-126.
[28] 宫安东, 韩萌真, 孔宪巍, 等. 茶树内生菌的应用性研究进展[J]. 信阳师范学院学报(自然科学版), 2017, 30(1): 168-172.
[29] 李远华, 郑芳, 倪德江, 等. 茶树接种VA菌根的生理特性研究[J]. 茶叶科学, 2011, 31(6):504-512.
[30] JIANG X L, LI W W, HAN M L, et al. Aluminum-tolerant, growth-promoting endophytic bacteria as contributors in promoting tea plant growth and alleviating aluminum stress [J]. Tree Physiology, 2022, 42(5): 1043-1058.
[31] 李雪娇. 油茶软腐病内生拮抗细菌的分离筛选及菌剂的研制[D]. 长沙: 中南林业科技大学, 2011.
[32] SUN J, CHANG M M, LI H J, et al. Endophytic bacteria as contributors to theanine production in Camellia sinensis [J]. Journal of Agricultural and Food Chemistry, 2019, 67(38): 10685-10693.
[33] SIDHU D, VASUNDHARA M, DEY P. Chemical characterization, pathway enrichments and bioactive potentials of catechin-producing endophytic fungi isolated from tea leaves [J]. RSC Advances, 2024, 14(45): 33034-33047.
[34] 胡明宇, 林昌虎, 何腾兵, 等. 茶园土壤性状与茶叶品质关系研究现状[J]. 贵州科学,2009, 27(3): 92-96.
[35] WEI S R, LIU B H, NI K, et al. Rhizosphere microbial community shows a greater response than soil properties to tea (Camellia sinensis L.) cultivars [J]. Agronomy, 2023, 13(1): 221.
[36] YE J H, WANG Y H, LIN S X, et al. Metabolomics analysis of the effect of acidification on rhizosphere soil microecosystem of tea tree [J]. Frontiers in Plant Science, 2023, 14: 1137465.
[37] CHEN Y X, FU W J, XIAO H, et al. A review on rhizosphere microbiota of tea plant (Camellia sinensis L): recent insights and future perspectives [J]. Journal of Agricultural and Food Chemistry, 2023, 71(49): 19165-19188.
[38] YANG W H, LI C J, WANG S S, et al. Influence of biochar and biochar-based fertilizer on yield, quality of tea and microbial community in an acid tea orchard soil [J]. Applied Soil Ecology, 2021, 166: 104005.
[39] 许广, 王梦姣, 邓百万, 等. 不同植茶年限茶树根际土壤细菌多样性及群落结构研究[J]. 生物技术通报, 2020, 36(3): 124-132.
[40] XIE H T, CHEN Z M, FENG X X, et al. L-theanine exuded from Camellia sinensis roots regulates element cycling in soil by shaping the rhizosphere microbiome assembly [J]. Science of the Total Environment, 2022, 837: 155801.
[41] GUO J M, LI J F, ZHANG S Q, et al. Study on the soil microbial community structure of the Rhizosphere of Camellia sinensis L. in Anping Village, Kaiyang County, Guizhou Province [J]. Annals of Microbiology, 2023, 73(1): 39.
[42] PANDEY A, PALNI L M S. The rhizosphere effect of tea on soil microbes in a Himalayan monsoonal location [J]. Biology and Fertility of Soils, 1996, 21(3): 131-137.
[43] LIN W W, LIN M H, ZHOU H Y, et al. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards [J]. PLoS One, 2019, 14(5): e0217018.
[44] ZHANG Q, ZHANG Y, MIAO P Y, et al. Effects of pruning on tea tree growth, soil enzyme activity and microbial diversity [J]. Agronomy, 2023, 13(5): 1214.
[45] ?AKMAK?I R. The variability of the predominant culturable plant growth-promoting rhizobacterial diversity in the acidic tea rhizosphere soils in the eastern black sea region [J]. Al?nteri Zirai Bilimler Dergisi, 2019, 34(2): 175-181.
[46] FITRIATIN B N, WIDYASMARA A, ARIFIN M, et al. Isolation and screening of phosphate solubilizing bacteria from rhizosphere of tea (camellia sinensis L.) on andisols [J]. International Journal of Sustainable Agricultural Research, 2017, 4(4): 95-100.
[47] CHOPRA A, KUMAR VANDANA U, RAHI P, et al. Plant growth promoting potential of Brevibacterium sediminis A6 isolated from the tea rhizosphere of Assam, India [J]. Biocatalysis and Agricultural Biotechnology, 2020, 27: 101610.
[48] THAKUR R, SHARMA K C, GULATI A, et al. Stress-tolerant viridibacillus arenosi strain IHB B7171 from tea rhizosphere as a potential broad-spectrum microbial inoculant [J]. Indian Journal of Microbiology, 2017, 57(2): 195-200.
[49] CHAKRABORTY A P , CHAKRABORTY B N, CHAKRABORTY U. Bacillus megaterium from tea rhizosphere promotes growth and induces systemic resistance in tea against Sclerotium rolfsii[J]. Indian Phytopathology, 2015, 68: 237-247.
[50] SAIKIA R, SARMA R K, YADAV A, et al. Genetic and functional diversity among the antagonistic potential fluorescent pseudomonads isolated from tea rhizosphere [J]. Current Microbiology, 2011, 62(2): 434-444.
[51] 孙春霞, 邵元海, 周红, 等. 茶树六种重要叶部病害研究进展[J]. 茶叶, 2020, 46(2): 71-76.
[52] SANJAY R, PONMURUGAN P, BABY U I. Evaluation of fungicides and biocontrol agents against grey blight disease of tea in the field [J]. Crop Protection, 2008, 27(3/4/5): 689-694.
[53] 黄虹, 谭琳, 沈程文, 等. 茶树根腐病拮抗细菌的筛选鉴定及其生防潜力[J]. 湖南农业大学学报(自然科学版), 2025, 51(1): 62-68.
[54] 李红莉, 卢健, 赵芸, 等. 茶树炭疽病生防菌的筛选、鉴定及拮抗机制研究[J]. 浙江农业科学, 2024, 65(8): 1902-1907.
[55] GONG A D, DONG F Y, HU M J, et al. Antifungal activity of volatile emitted from Enterobacter asburiae Vt-7 against Aspergillus flavus and aflatoxins in peanuts during storage [J]. Food Control, 2019, 106: 106718.
[56] ELANGO V, MANJUKARUNAMBIKA K, PONMURUGAN P, et al. Evaluation of Streptomyces spp. for effective management of Poria hypolateritia causing red root-rot disease in tea plants [J]. Biological Control, 2015, 89: 75-83.
[57] 黄友谊, 方欣, 隋梦圆, 等. 茶叶微生物研究现状与展望[J]. 华中农业大学学报, 2022, 41(5): 24-32.
[58] 陈嘉敏, 管维轩, 朱洁倩, 等. 植物病害生防菌株的研究进展[J]. 微生物前沿, 2017, 6(2): 35-43.
[59] WU Y Z, TAN Y M, PENG Q J, et al. Biocontrol potential of endophytic bacterium Bacillus altitudinis GS-16 against tea anthracnose caused by Colletotrichum gloeosporioides [J]. PeerJ, 2024, 12: e16761.
[60] BHATTACHARYYA G, VIRDEE S, WINTER A. Revisiting histories of anti-racist thought and activism [J]. Identities, 2020, 27(1): 1-19.
[61] BRAGARD C, BAPTISTA P, VASSILIOU E C, et al. Pest categorisation of pestalotiopsis microspora [J]. EFSA Journal, 2023, 21(12): e8493.
[62] 邓玉莲, 谭琳, 吉进军, 等. 茶树根腐病拮抗真菌的筛选、鉴定及防病促生特性研究[J]. 中国生物防治学报, 2024, 40(4): 914-926.
[63] LIU H, CHEN G H, SUN J J, et al. Isolation, characterization, and tea growth-promoting analysis of JW-CZ2, a bacterium with 1-aminocyclopropane-1-carboxylic acid deaminase activity isolated from the rhizosphere soils of tea plants [J]. Frontiers in Microbiology, 2022, 13: 792876.