|本期目录/Table of Contents|

[1]尹 璇,郑宁国,葛超荣,等.茶树微生物资源研究进展[J].武汉工程大学学报,2025,47(04):405-412.[doi:10.19843/j.cnki.CN42-1779/TQ.202504022]
 YIN Xuan,ZHENG Ningguo,GE Chaorong,et al.Research progress in microbial resources of tea plants[J].Journal of Wuhan Institute of Technology,2025,47(04):405-412.[doi:10.19843/j.cnki.CN42-1779/TQ.202504022]
点击复制

茶树微生物资源研究进展
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年04期
页码:
405-412
栏目:
现代大化工
出版日期:
2025-08-29

文章信息/Info

Title:
Research progress in microbial resources of tea plants
文章编号:
1674 - 2869(2025)04 - 0405 - 08
作者:
武汉工程大学环境生态与生物工程学院,湖北 武汉 430205
Author(s):
School of Environmental Ecology and Biological Engineering,Wuhan Institute of Technology, Wuhan 430205, China
关键词:
Keywords:
分类号:
S571.1
DOI:
10.19843/j.cnki.CN42-1779/TQ.202504022
文献标志码:
A
摘要:
茶树作为世界上最重要的经济作物之一,其品质依赖于微生物组的生态功能,微生物在茶树生长发育、抗病抗逆和品质提高等方面发挥着重要作用。随着微生物组学技术的发展,茶树相关微生物资源的研究日益受到关注。本文系统综述了茶树微生物资源的研究进展,阐述了全球茶树资源的生态分布特征;茶树叶际、内生和根际三大生境的微生物群落组成与功能特异性;以及茶树生防菌在茶树病虫害绿色防控中的应用,旨在为茶树微生物资源深入挖掘和开发利用提供参考。未来的研究应着力于解析微生物组与茶树互作的分子机制;加强建立茶树优良功能菌种的筛选、评价和应用体系;推进茶树微生物资源的产业化应用;开发基于微生物组调控的栽培模式,推动茶树微生物研究进入新的发展阶段,为茶产业的高质量发展提供新的科技支撑。
Abstract:
As one of the most economically significant crops in the world, tea’s quality relies heavily on the ecological functions of its associated microbiome. Microbial communities play crucial roles in various aspects of tea cultivation, including plant growth and development, disease and stress resistance, and quality enhancement. To provide valuable references for further exploration and utilization of tea-associated microbial resources, this review systematically summarizes recent advances in tea plant microbial research, including: (1) ecological distribution characteristics of tea-associated microbial resources worldwide; (2) composition and functional specificity of microbial communities in three key habitats-the phyllosphere, endosphere, and rhizosphere of tea plants; and (3) application of biocontrol microorganisms in green pest management for tea cultivation. Future research should focus on elucidating the molecular mechanisms underlying plant-microbiome interactions, establishing comprehensive systems for screening and evaluating beneficial microbial strains, promoting industrial applications of tea-associated microorganisms, and developing microbiome-based cultivation strategies. These advancements will propel tea microbiome research into a new phase while providing scientific and technological support for high-quality development of the tea industry.


参考文献/References:

[1] 王斌, 央宗, 黄世迅, 等. 浅析生态环境对茶叶品质的影响[J]. 南方农业, 2023, 17(19): 66-69.
[2] AHMED S, GRIFFIN T S, KRANER D, et al. Environmental factors variably impact tea secondary metabolites in the context of climate change [J]. Frontiers in Plant Science, 2019, 10: 939.
[3] WEN B, ZHANG X L, REN S, et al. Characteristics of soil nutrients, heavy metals and tea quality in different intercropping patterns [J]. Agroforestry Systems, 2020, 94(3): 963-974.
[4] DONG C X, LI F, YANG T Y, et al. Theanine transporters identified in tea plants (Camellia sinensis L.) [J]. The Plant Journal, 2020, 101(1): 57-70.
[5] JIA X L, WANG Y H, ZHANG Q, et al. Reasonable deep application of sheep manure fertilizer to alleviate soil acidification to improve tea yield and quality [J]. Frontiers in Plant Science, 2023, 14: 1179960.
[6] 2024年中国茶产业市场前景预测研究报告 [EB/OL]. (2024-04-19)[2025-04-13].https://www.163.com/dy/article/J04J4C2705198SOQ.html.
[7] DE ANDRADE ARRUDA FERNANDES I, MACIEL G M, BORTOLINI D G, et al. The bitter side of teas: pesticide residues and their impact on human health [J]. Food and Chemical Toxicology, 2023, 179: 113955.
[8] WANG Z T, GENG Y B, LIANG T. Optimization of reduced chemical fertilizer use in tea gardens based on the assessment of related environmental and economic benefits [J]. Science of the Total Environment, 2020, 713: 136439.
[9] 张玥, 胡雲飞, 王树茂, 等. 茶园年限对根际土壤真菌群落结构及多样性的影响[J]. 应用与环境生物学报, 2018, 24(5): 972-977.
[10] 中国古茶树资源状况白皮书(2024).[EB/OL]. (2025-02-27)[2025-02-27].https://www.vzkoo.com/document/2024053195d23c935a6a96259e938fa9.html.
[11] LI P D, ZHU Z R, ZHANG Y Z, et al. The phyllosphere microbiome shifts toward combating melanose pathogen [J]. Microbiome, 2022, 10(1): 56.
[12] 岑浴. 多粘类芽孢杆菌在茶叶上的定殖及其对叶际细菌群落的影响[D]. 石家庄: 河北科技大学, 2016.
[13] DING K, LV W Y, REN H Z, et al. Small world but large differences: cultivar-specific secondary metabolite-mediated phyllosphere fungal homeostasis in tea plant (Camellia sinensis) [J]. Plant and Soil, 2024, 502(1): 725-743.
[14] XU P, FAN X Y, MAO Y X, et a l. Temporal metabolite responsiveness of microbiota in the tea plant phyllosphere promotes continuous suppression of fungal pathogens [J]. Journal of Advanced Research, 2022, 39: 49-60.
[15] XU P, STIRLING E, XIE H T, et al. Continental scale deciphering of microbiome networks untangles the phyllosphere homeostasis in tea plant [J]. Journal of Advanced Research, 2023, 44: 13-22.
[16] ASHIHARA H. Occurrence, biosynthesis and metabolism of theanine (γ-glutamyl-L-ethylamide) in plants: a comprehensive review [J]. Natural Product Communications, 2015, 10(5): 803-810.
[17] DOU Q P. Tea in health and disease [J]. Nutrients, 2019, 11(4): 929.
[18] 张华琳, 王科翰, 陈雪冰, 等. 茶树内生菌的研究进展[J]. 农业技术与装备, 2022(2): 9-11.
[19] 汪立群, 颜小梅, 郭小双, 等. 紫娟、云抗10号两个茶树品种内生菌多样性研究[J]. 安徽农业大学学报, 2016, 43(1): 1-5.
[20] 游见明. 茶树中内生菌的动态分布[J]. 广西植物, 2008, 28(1): 82-85.
[21] 王桥美, 严亮, 杨瑞娟, 等. 普洱地区茶叶内生细菌与根际土壤细菌群落结构分析[J]. 微生物学报, 2022, 62(2): 703-714.
[22] 张婉婷, 张灵枝. 茶树内生真菌的研究进展[J]. 中国茶叶加工, 2011(4): 32-36.
[23] 陈晖奇. 茶树内生真菌的初步研究[D]. 福州: 福建师范大学, 2007.
[24] WU Z Z, SU Q Q, CUI Y C, et al. Temporal and spatial pattern of endophytic fungi diversity of Camellia sinensis (cv. Shu Cha Zao) [J]. BMC Microbiology, 2020, 20(1): 270.
[25] WIN P M, MATSUMURA E, FUKUDA K. Effects of pesticides on the diversity of endophytic fungi in tea plants [J]. Microbial Ecology, 2021, 82(1): 62-72.
[26] CHANG M M, MA J Y, SUN Y, et al. Role of endophytic bacteria in the remobilization of leaf nitrogen mediated by CsEGGT in tea plants (Camellia sinensis L.) [J]. Journal of Agricultural and Food Chemistry, 2023, 71(13): 5208-5218.
[27] 高秀兵, 陈娟, 郭灿, 等. 茶树丛枝菌根真菌的研究进展[J]. 贵州农业科学, 2011, 39(9):122-126.
[28] 宫安东, 韩萌真, 孔宪巍, 等. 茶树内生菌的应用性研究进展[J]. 信阳师范学院学报(自然科学版), 2017, 30(1): 168-172.
[29] 李远华, 郑芳, 倪德江, 等. 茶树接种VA菌根的生理特性研究[J]. 茶叶科学, 2011, 31(6):504-512.
[30] JIANG X L, LI W W, HAN M L, et al. Aluminum-tolerant, growth-promoting endophytic bacteria as contributors in promoting tea plant growth and alleviating aluminum stress [J]. Tree Physiology, 2022, 42(5): 1043-1058.
[31] 李雪娇. 油茶软腐病内生拮抗细菌的分离筛选及菌剂的研制[D]. 长沙: 中南林业科技大学, 2011.
[32] SUN J, CHANG M M, LI H J, et al. Endophytic bacteria as contributors to theanine production in Camellia sinensis [J]. Journal of Agricultural and Food Chemistry, 2019, 67(38): 10685-10693.
[33] SIDHU D, VASUNDHARA M, DEY P. Chemical characterization, pathway enrichments and bioactive potentials of catechin-producing endophytic fungi isolated from tea leaves [J]. RSC Advances, 2024, 14(45): 33034-33047.
[34] 胡明宇, 林昌虎, 何腾兵, 等. 茶园土壤性状与茶叶品质关系研究现状[J]. 贵州科学,2009, 27(3): 92-96.
[35] WEI S R, LIU B H, NI K, et al. Rhizosphere microbial community shows a greater response than soil properties to tea (Camellia sinensis L.) cultivars [J]. Agronomy, 2023, 13(1): 221.
[36] YE J H, WANG Y H, LIN S X, et al. Metabolomics analysis of the effect of acidification on rhizosphere soil microecosystem of tea tree [J]. Frontiers in Plant Science, 2023, 14: 1137465.
[37] CHEN Y X, FU W J, XIAO H, et al. A review on rhizosphere microbiota of tea plant (Camellia sinensis L): recent insights and future perspectives [J]. Journal of Agricultural and Food Chemistry, 2023, 71(49): 19165-19188.
[38] YANG W H, LI C J, WANG S S, et al. Influence of biochar and biochar-based fertilizer on yield, quality of tea and microbial community in an acid tea orchard soil [J]. Applied Soil Ecology, 2021, 166: 104005.
[39] 许广, 王梦姣, 邓百万, 等. 不同植茶年限茶树根际土壤细菌多样性及群落结构研究[J]. 生物技术通报, 2020, 36(3): 124-132.
[40] XIE H T, CHEN Z M, FENG X X, et al. L-theanine exuded from Camellia sinensis roots regulates element cycling in soil by shaping the rhizosphere microbiome assembly [J]. Science of the Total Environment, 2022, 837: 155801.
[41] GUO J M, LI J F, ZHANG S Q, et al. Study on the soil microbial community structure of the Rhizosphere of Camellia sinensis L. in Anping Village, Kaiyang County, Guizhou Province [J]. Annals of Microbiology, 2023, 73(1): 39.
[42] PANDEY A, PALNI L M S. The rhizosphere effect of tea on soil microbes in a Himalayan monsoonal location [J]. Biology and Fertility of Soils, 1996, 21(3): 131-137.
[43] LIN W W, LIN M H, ZHOU H Y, et al. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards [J]. PLoS One, 2019, 14(5): e0217018.
[44] ZHANG Q, ZHANG Y, MIAO P Y, et al. Effects of pruning on tea tree growth, soil enzyme activity and microbial diversity [J]. Agronomy, 2023, 13(5): 1214.
[45] ?AKMAK?I R. The variability of the predominant culturable plant growth-promoting rhizobacterial diversity in the acidic tea rhizosphere soils in the eastern black sea region [J]. Al?nteri Zirai Bilimler Dergisi, 2019, 34(2): 175-181.
[46] FITRIATIN B N, WIDYASMARA A, ARIFIN M, et al. Isolation and screening of phosphate solubilizing bacteria from rhizosphere of tea (camellia sinensis L.) on andisols [J]. International Journal of Sustainable Agricultural Research, 2017, 4(4): 95-100.
[47] CHOPRA A, KUMAR VANDANA U, RAHI P, et al. Plant growth promoting potential of Brevibacterium sediminis A6 isolated from the tea rhizosphere of Assam, India [J]. Biocatalysis and Agricultural Biotechnology, 2020, 27: 101610.
[48] THAKUR R, SHARMA K C, GULATI A, et al. Stress-tolerant viridibacillus arenosi strain IHB B7171 from tea rhizosphere as a potential broad-spectrum microbial inoculant [J]. Indian Journal of Microbiology, 2017, 57(2): 195-200.
[49] CHAKRABORTY A P , CHAKRABORTY B N, CHAKRABORTY U. Bacillus megaterium from tea rhizosphere promotes growth and induces systemic resistance in tea against Sclerotium rolfsii[J]. Indian Phytopathology, 2015, 68: 237-247.
[50] SAIKIA R, SARMA R K, YADAV A, et al. Genetic and functional diversity among the antagonistic potential fluorescent pseudomonads isolated from tea rhizosphere [J]. Current Microbiology, 2011, 62(2): 434-444.
[51] 孙春霞, 邵元海, 周红, 等. 茶树六种重要叶部病害研究进展[J]. 茶叶, 2020, 46(2): 71-76.
[52] SANJAY R, PONMURUGAN P, BABY U I. Evaluation of fungicides and biocontrol agents against grey blight disease of tea in the field [J]. Crop Protection, 2008, 27(3/4/5): 689-694.
[53] 黄虹, 谭琳, 沈程文, 等. 茶树根腐病拮抗细菌的筛选鉴定及其生防潜力[J]. 湖南农业大学学报(自然科学版), 2025, 51(1): 62-68.
[54] 李红莉, 卢健, 赵芸, 等. 茶树炭疽病生防菌的筛选、鉴定及拮抗机制研究[J]. 浙江农业科学, 2024, 65(8): 1902-1907.
[55] GONG A D, DONG F Y, HU M J, et al. Antifungal activity of volatile emitted from Enterobacter asburiae Vt-7 against Aspergillus flavus and aflatoxins in peanuts during storage [J]. Food Control, 2019, 106: 106718.
[56] ELANGO V, MANJUKARUNAMBIKA K, PONMURUGAN P, et al. Evaluation of Streptomyces spp. for effective management of Poria hypolateritia causing red root-rot disease in tea plants [J]. Biological Control, 2015, 89: 75-83.
[57] 黄友谊, 方欣, 隋梦圆, 等. 茶叶微生物研究现状与展望[J]. 华中农业大学学报, 2022, 41(5): 24-32.
[58] 陈嘉敏, 管维轩, 朱洁倩, 等. 植物病害生防菌株的研究进展[J]. 微生物前沿, 2017, 6(2): 35-43.
[59] WU Y Z, TAN Y M, PENG Q J, et al. Biocontrol potential of endophytic bacterium Bacillus altitudinis GS-16 against tea anthracnose caused by Colletotrichum gloeosporioides [J]. PeerJ, 2024, 12: e16761.
[60] BHATTACHARYYA G, VIRDEE S, WINTER A. Revisiting histories of anti-racist thought and activism [J]. Identities, 2020, 27(1): 1-19.
[61] BRAGARD C, BAPTISTA P, VASSILIOU E C, et al. Pest categorisation of pestalotiopsis microspora [J]. EFSA Journal, 2023, 21(12): e8493.
[62] 邓玉莲, 谭琳, 吉进军, 等. 茶树根腐病拮抗真菌的筛选、鉴定及防病促生特性研究[J]. 中国生物防治学报, 2024, 40(4): 914-926.
[63] LIU H, CHEN G H, SUN J J, et al. Isolation, characterization, and tea growth-promoting analysis of JW-CZ2, a bacterium with 1-aminocyclopropane-1-carboxylic acid deaminase activity isolated from the rhizosphere soils of tea plants [J]. Frontiers in Microbiology, 2022, 13: 792876.


相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2025-04-26
基金项目:国家自然科学基金(42207157);湖北省高等学校优秀中青年科技创新团队计划项目(T2023008)
作者简介:尹 璇,硕士研究生。Email: 208268773@qq.com
*通信作者:姚槐应,博士,教授。Email: hyyao@iue.ac.cn
引文格式:尹璇,郑宁国,葛超荣,等. 茶树微生物资源研究进展[J]. 武汉工程大学学报,2025,47(4):405-412.


更新日期/Last Update: 2025-08-29