|本期目录/Table of Contents|

[1]周博韬,彭 浩,卢海林*,等.CEEMDAN-改进小波阈值联合去噪算法在地表沉降预测中的应用[J].武汉工程大学学报,2025,47(04):455-460.[doi:10.19843/j.cnki.CN42-1779/TQ.202403024]
 ZHOU Botao,PENG Hao,LU Hailin*,et al.Application of CEEMDAN-improved wavelet threshold combinational denoising algorithm in ground subsidence prediction[J].Journal of Wuhan Institute of Technology,2025,47(04):455-460.[doi:10.19843/j.cnki.CN42-1779/TQ.202403024]
点击复制

CEEMDAN-改进小波阈值联合去噪算法在地表沉降预测中的应用
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年04期
页码:
455-460
栏目:
智能制造
出版日期:
2025-08-29

文章信息/Info

Title:
Application of CEEMDAN-improved wavelet threshold combinational denoising algorithm in ground subsidence prediction
文章编号:
1674 - 2869(2025)04- 0455 - 06
作者:
1. 武汉工程大学土木工程与建筑学院,湖北 武汉 430074;
2. 中铁十一局集团第一工程有限公司,湖北 襄阳 441104;
3. 武汉工程大学绿色土木工程材料与结构湖北省工程研究中心,湖北 武汉 430074
Author(s):
1. School of Civil Engineering and Architecture,Wuhan Institute of Technology,Wuhan 430074, China;
2. China Railway 11th Bureau Group No1 Engineering Co., Ltd, Xiangyang 441104, China;
3. Hubei Provincial Engineering Research Center for Green Civil Engineering Materials and Structures,Wuhan Institute of Technology, Wuhan 430074, China
关键词:
Keywords:
分类号:
TU473
DOI:
10.19843/j.cnki.CN42-1779/TQ.202403024
文献标志码:
A
摘要:
对监测数据进行去噪处理有利于后期地表沉降预测,但目前广泛采用的自适应噪声完备集合经验模态分解(CEEMDAN)-小波阈值联合去噪算法中,软阈值函数存在的恒定偏差和硬阈值函数存在的不连续性等问题会严重影响去噪效果。提出一种改进阈值函数,形成CEEMDAN-改进小波阈值联合去噪算法,提高了去噪效果和预测精度。先对监测数据进行CEEMDAN分解,再用改进小波阈值去噪算法对分解得到的高频分量进行去噪,最后将去噪后的高频分量与低频分量重构得到去噪数据。仿真信号去噪实验表明,与原算法相比,CEEMDAN-改进小波阈值联合去噪信号的信噪比提高了2.84%、均方根误差降低了7.14%;工程实例研究表明,使用CEEMDAN-改进小波阈值联合去噪数据得到的沉降预测结果较原算法的最大绝对误差和均方根误差分别降低了4.23%和10.53%。
Abstract:
Denoising monitoring data is beneficial to later-stage ground subsidence prediction. However, in the widely used complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-wavelet threshold combinational denoising algorithm, issues such as constant bias in soft threshold functions and discontinuity in hard threshold functions seriously affect the denoising effect. To address this issue, we proposed an improved threshold function to form a CEEMDAN-improved wavelet threshold combinational denoising algorithm, which enhances the denoising effect and prediction accuracy. First, the monitoring data was decomposed using CEEMDAN, then the improved wavelet threshold denoising algorithm was applied to denoise the high-frequency components obtained from the decomposition, and finally, the denoised high-frequency components were reconstructed with the low-frequency components to obtain denoised data. Denoising experiments on simulated signals showed that compared to the original algorithm, the signal-to-noise ratio of the denoised signal using CEEMDAN-improved wavelet threshold combinational denoising is increased by 2.84%,and the root mean square error is decreased by 7.14%. Engineering case studies indicated that using denoised data from CEEMDAN-improved wavelet threshold combinational denoising for subsidence prediction results in a reduction of 4.23% and 10.53% in maximum absolute error and root mean square error respectively, compared to the original algorithm.

参考文献/References:

[1] 庄铃强,吴能森,余凌锋,等.某软土深基坑降水开挖地表沉降及影响因素分析[J].武汉工程大学学报,2020,42(6):663-668.
[2] 刘金昌,王慧妮,徐吟,等. 地铁施工塌陷的SBAS-InSAR长时序监测与早期识别[J].武汉工程大学学报,2024,46(1):105-110.
[3] 曾学宏,赵义花.利用SBAS-InSAR技术分析西宁市地面沉降监测及驱动因素[J]. 测绘通报,2022(6):137-142.
[4] 钱建固,吴安海,季军,等. 基于小波优化LSTM-ARMA模型的岩土工程非线性时间序列预测[J]. 同济大学学报(自然科学版),2021,49(8):1107-1115.
[5] 郭健,陈健,胡杨. 基于小波智能模型的地铁车站基坑变形时序预测分析[J]. 岩土力学,2020,41(增刊1):299-304.
[6] 郭健,查吕应,庞有超,等. 基于小波分析的深基坑地表沉降预测研究[J]. 岩土工程学报,2014,36(增刊2):343-347.
[7] 李长冬,唐辉明,胡斌,等.小波分析和RBF神经网络在地基沉降预测中的应用研究[J]. 岩土力学,2008,29(7):1917-1922.
[8] 姜刚,李举,陈盟,等.灰色-小波神经网络支持下对地铁工程沉降变形的预测[J]. 测绘通报,2019(5):60-63.
[9] TORRES M E,COLOMINAS M A,SCHLOTTHAUER G,et al. A complete ensemble empirical mode decomposition with adaptive noise[C] // 2011 IEEE International Conference on Acoustics,Speech,and Signal Processing (ICASSP). Prague,Czech:IEEE,2011:4144-4147.
[10] DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation by wavelet shrinkage [J]. Biometrika,1994,81(3):425-455.
[11] 蔡改贫,赵小涛,胡显能,等. CEEMDAN-小波阈值联合的球磨机筒体振动信号去噪方法研究[J]. 机械科学与技术,2020,39(7):1077-1085.
[12] 徐阳,罗明璋,李涛.基于CEEMDAN和小波阈值的ECG去噪算法研究[J]. 现代电子技术,2018,41(7):45-48,53.
[13] 娄华生,行鸿彦,李瑾,等.基于改进CEEMDAN和小波阈值的雨声信号去噪算法研究[J]. 电子测量技术,2023,46(7):103-109.
[14] GUO H,YUE L H,SONG P,et al. Denoising of an ultraviolet light received signal based on improved wavelet transform threshold and threshold function [J]. Applied Optics,2021,60(28):8983-8990.
[15] 吴飞,马晨浩,程坤.基于改进阈值的振动信号小波去噪方法研究[J]. 合肥工业大学学报(自然科学版),2022,45(7):873-877,900.
[16] 吴叶丽,行鸿彦,李瑾,等.改进阈值函数的小波去噪算法[J]. 电子测量与仪器学报,2022,36(4):9-16.
[17] 齐善鲁,范宝德,张迪.改进小波阈值去噪算法在GPR数据处理中的应用[J]. 电子测量技术,2023,46(1):17-24.
[18] 王亚娟,李怀良,庹先国,等.一种集成经验模态分解的样本熵阈值微地震信号降噪方法[J]. 物探与化探,2019,43(5):1083-1089.
[19] 何鹏,武思源,罗超,等.基于ESMD的去噪算法在高速铁路沉降监测数据中的应用[J]. 测绘与空间地理信息,2023,46(5):162-166.
[20] 王民顿,尚俊娜. 基于CEEMD和改进小波阈值法的钢架结构沉降数据去噪方法[J].大地测量与地球动力学,2022,42(11):1191-1195.
[21] 易黄智,高飞. 基于GA-BP神经网络的地铁变形预测模型[J].合肥工业大学学报(自然科学版),2021,44(11):1513-1517.


相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-03-19
基金项目:湖北省建设科技计划项目(2023011);武汉市城建局科技项目(202359);中铁十一局集团有限公司科技创新项目(21-AI-01)
作者简介:周博韬,硕士研究生。Email:940299425@qq.com
*通信作者:卢海林,博士,教授。Email:hail_lu@yangtzeu.edu.cn
引文格式:周博韬,彭浩,卢海林,等. CEEMDAN-改进小波阈值联合去噪算法在地表沉降预测中的应用[J]. 武汉工程大学学报,2025,47(4):455-460.
更新日期/Last Update: 2025-08-29