|本期目录/Table of Contents|

[1]张 蓉,尹志坚,温博演,等.吸附分离CO2气体混合物的功能化多孔液体设计[J].武汉工程大学学报,2025,47(05):487-496.[doi:10.19843/j.cnki.CN42-1779/TQ.202304014]
 ZHANG Rong,YIN Zhijian,WEN Boyan,et al.Design of functionalized porous liquids for adsorptive separation of CO2 gas mixtures[J].Journal of Wuhan Institute of Technology,2025,47(05):487-496.[doi:10.19843/j.cnki.CN42-1779/TQ.202304014]
点击复制

吸附分离CO2气体混合物的功能化多孔液体设计
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年05期
页码:
487-496
栏目:
现代大化工
出版日期:
2025-10-31

文章信息/Info

Title:
Design of functionalized porous liquids for adsorptive separation of CO2 gas mixtures

文章编号:
1674 - 2869(2025)05 - 0487 - 10
作者:
武汉工程大学化工与制药学院,绿色化工过程教育部重点实验室(武汉工程大学),
新型反应器与绿色化工技术湖北省重点实验室(武汉工程大学),湖北 武汉 430205

Author(s):
School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology; Key Laboratory of Green Chemical Engineering Process of Ministry of Education (Wuhan Institute of Technology); Hubei key Laboratory of Novel Reactor and Green Chemical Technology (Wuhan Institute of Technology), Wuhan 430205, China
关键词:
Keywords:
分类号:
TB383
DOI:
10.19843/j.cnki.CN42-1779/TQ.202304014
文献标志码:
A
摘要:
多孔液体是一种新型的具有流动性的多孔材料,广泛应用于气体储存和分离等领域。使用分子动力学模拟,设计了27种功能化多孔液体来吸附纯气体并分离CO2/N2和CO2/CH4二元混合气体。对于纯气体,27个有机笼型分子内部或周围的CO2存储量大于N2和CH4的存储量。CO2出现在核心区域的概率很高。LJ-气体势能在总相互作用势能中起重要作用,且LJ-CO2势能高于N2和CH4。对于二元混合气体,LJ-CO2势能,核心区或笼区CO2的储气量高于氮气或CH4。含B2:C4-β的多孔液体对两种混合气体中的CO2具有较好的选择性。经统计分析和数据拟合,有机笼型分子对CO2的选择性与LJ-CO2势能呈正相关。
Abstract:
Porous liquids (PLs) represent a novel class of flowable porous materials with broad applications in gas storage and separation. Twenty-seven types of functionalized porous liquids were designed and evaluated via molecular dynamics (MD) simulations for adsorbing pure gases (CO2, N2, CH4) and separating CO2/N2 and CO2/CH4 binary gas mixtures. For pure gases, the cumulation of CO2 inside or around the organic cage molecules was greater than that of N2 and CH4. CO2 exhibited a high probability of presence within the core region of the cages. The Lennard-Jones (LJ) interaction potential between the cage and gas played a major role in the total interaction energy, with the LJ cage-CO2 interaction potential being higher than that of N2 and CH4. In binary gas mixtures, both the LJ cage-CO2 interaction and the storage capacity of CO2 in the core or cage regions exceeded those of N2 or CH4. The porous liquid containing B2:C4-b showed high selectivity towards CO2 in both mixtures. Statistical analysis and data fitting confirmed a positive correlation between the selectivity of the cage molecules for CO2 and the LJ cage-CO2 interaction potential.

参考文献/References:

[1] 吴进军, 朱峰, 余响林, 等. 氧化石墨炔的制备及光催化氧化脱硫研究[J]. 武汉工程大学学报, 2022, 44(4): 384-389.
[2] WEILAND P. Biogas production: current state and perspectives [J]. Applied Microbiology and Biotechnology, 2010, 85(4): 849-860.
[3] VENNA S R, CARREON M A. Amino-functionalized SAPO-34 membranes for CO2/CH4 and CO2/N2 separation [J]. Langmuir, 2011, 27(6): 2888-2894.
[4] CHEETHAM A K, FéREY G, LOISEAU T. Open-framework inorganic materials [J]. Angewandte Chemie International Edition, 1999, 38(22): 3268-3292.
[5] 张曼琳, 胡顺龙, 刘荣荣, 等. 两种新MOFs的合成、表征及光催化性质[J]. 武汉工程大学学报, 2021, 43(5): 481-486, 495.
[6] C?Té A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks [J]. Science, 2005, 310(5751): 1166-1170.
[7] COTE A P, EL-KADERI H M, FURUKAWA H, et al. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks [J]. Journal of the American Chemical Society, 2007, 129(43): 12914-12915.
[8] SZOSTAK R. Molecular sieves: principles of synthesis and identification[M]. Dordrecht: Springer Netherlands, 1989 .
[9] ZHOU H C, LONG J R, YAGHI O M. Introduction to metal-organic frameworks [J]. Chemical Reviews, 2012, 112(2): 673-674.
[10] BRUTSCHY M, SCHNEIDER M W, MASTALERZ M, et al. Porous organic cage compounds as highly potent affinity materials for sensing by quartz crystal microbalances [J]. Advanced Materials, 2012, 24(45): 6049-6052.
[11] GIRI N, DAVIDSON C E, MELAUGH G, et al. Alkylated organic cages: from porous crystals to neat liquids [J]. Chemical Science, 2012, 3(6): 2153-2157.
[12] MELAUGH G, GIRI N, DAVIDSON C E, et al. Designing and understanding permanent microporosity in liquids [J]. Physical Chemistry Chemical Physics, 2014, 16(20): 9422-9431.
[13] O’REILLY N, GIRI N, JAMES S L. Porous liquids [J]. Chemistry-A European Journal, 2007, 13(11): 3020-3025.
[14] YIN Z J, CHEN H Y, YANG L, et al. Investigations of CO2 capture from gas mixtures using porous liquids [J]. Langmuir, 2021, 37(3): 1255-1266.
[15] RIEMER P W F, WEBSTER I C, ORMEROD W G, et al. Results and full fuel cycle study plans from the IEA greenhouse gas research and development programme [J]. Fuel, 1994, 73(7): 1151-1158.
[16] JIANG S, JONES J T A, HASELL T, et al. Porous organic molecular solids by dynamic covalent scrambling [J]. Nature Communications, 2011, 2: 207.
[17] JORGENSEN W L, MAXWELL D S, TIRADO-RIVES J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids [J]. Journal of the American Chemical Society, 1996, 118(45): 11225-11236.
[18] HARRIS J G, YUNG K H. Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model [J]. The Journal of Physical Chemistry, 1995, 99(31): 12021-12024.
[19] POTOFF J J, SIEPMANN J I. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen [J]. AIChE Journal, 2001, 47(7): 1676-1682.
[20] PARRINELLO M, RAHMAN A. Polymorphic transitions in single crystals: a new molecular dynamics method [J]. Journal of Applied Physics, 1981, 52(12): 7182-7190.
[21] HESS B, BEKKER H, BERENDSEN H J, et al. Lincs: A linear constraint solver for molecular simulations [J]. Journal of Computational Chemistry, 1997, 18(12): 1463-1472.
[22] HIGASHI H, TAMURA K. Calculation of diffusion coefficient for supercritical carbon dioxide and carbon dioxide+naphthalene system by molecular dynamics simulation using epm2 model [J]. Molecular Simulation, 2010, 36(10): 772-777.
[23] ZHOU X M, YU Y Y, CHEN H Y, et al. Porous material screening and evaluation for deep desulfurization of dry air [J]. Langmuir, 2020, 36(11): 2775-2785.
[24] BAE Y S, SNURR R Q. Development and evaluation of porous materials for carbon dioxide separation and capture [J]. Angewandte Chemie International Edition, 2011, 50(49): 11586-11596.
[25] ZHANG F, YANG F C, HUANG J S, et al. Thermodynamics and kinetics of gas storage in porous liquids [J]. Journal of Physical Chemistry B, 2016, 120(29): 7195-7200.

相似文献/References:

[1]车小军,李毅梅,周勇,等.正戊烷在ZSM系分子筛中吸附性质的分子模拟[J].武汉工程大学学报,2009,(03):12.
 CHE Xiao jun,LI Yi mei,ZHOU Yong,et al.Molecular simulation study on the adsorption characteristics of npentane in the ZSM series zeolites[J].Journal of Wuhan Institute of Technology,2009,(05):12.
[2]沈喜洲,黄驰,瞿东蕙,等.噻吩类硫化物和吡啶在分子筛上竞争吸附的分子模拟[J].武汉工程大学学报,2012,(8):6.[doi:103969/jissn16742869201208002]
 SHEN Xi zhou,HUANG Chi,QU Dong hui,et al.Molecular simulation of adsorption of thiophenetype sulfide and pyridine on FAU zeolite[J].Journal of Wuhan Institute of Technology,2012,(05):6.[doi:103969/jissn16742869201208002]
[3]樊庆春,胡芽,何敏,等.环碳酸酯型聚氨酯的玻璃化温度分子模拟[J].武汉工程大学学报,2014,(05):5.[doi:103969/jissn16742869201405002]
 FAN Qing chun,HU Y ..Molecular simulation of glass transition temperature of nonisocyanate polyurethane[J].Journal of Wuhan Institute of Technology,2014,(05):5.[doi:103969/jissn16742869201405002]
[4]徐章燕,闫志国*,侯森森,等.基于分子模拟的MIL-101吸附环境污染物研究进展[J].武汉工程大学学报,2025,47(02):127.[doi:10.19843/j.cnki.CN42-1779/TQ.202406016]
 XU Zhangyan,YAN Zhiguo*,HOU Sensen,et al.Progress in absorption of environmental pollutants by MIL-101 based on molecular simulation[J].Journal of Wuhan Institute of Technology,2025,47(05):127.[doi:10.19843/j.cnki.CN42-1779/TQ.202406016]

备注/Memo

备注/Memo:
收稿日期:2023-04-08
基金项目:国家自然科学基金(52000084)
作者简介:张 蓉,硕士研究生。Email:2317368474@qq.com
*通信作者:杨 犁,博士,教授。Email:liyang@wit.edu.cn
引文格式:张蓉,尹志坚,温博演,等. 吸附分离CO2气体混合物的功能化多孔液体设计[J]. 武汉工程大学学报,2025,47(5):487-496.

更新日期/Last Update: 2025-11-03