|本期目录/Table of Contents|

[1]曾世洲,姚文子,黄华波,等.一体式超级电容器的研究进展[J].武汉工程大学学报,2025,47(05):516-523.[doi:10.19843/j.cnki.CN42-1779/TQ.202402009]
 ZENG Shizhou,YAO Wenzi,HUANG Huabo,et al.Research progress on all-in-one supercapacitors[J].Journal of Wuhan Institute of Technology,2025,47(05):516-523.[doi:10.19843/j.cnki.CN42-1779/TQ.202402009]
点击复制

一体式超级电容器的研究进展
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年05期
页码:
516-523
栏目:
现代大化工
出版日期:
2025-10-31

文章信息/Info

Title:
Research progress on all-in-one supercapacitors
文章编号:
1674 - 2869(2025)05 - 0516 - 08
作者:
武汉工程大学材料科学与工程学院,湖北 武汉 430205
Author(s):
School of Materials Science and Engineering,Wuhan Institute of Technology, Wuhan 430205, China
关键词:
Keywords:
分类号:
TM53
DOI:
10.19843/j.cnki.CN42-1779/TQ.202402009
文献标志码:
A
摘要:
随着柔性可穿戴设备的流行,柔性储能设备迎来了蓬勃的发展。具有高功率密度、快速的充放电速度和出色的循环稳定性能的超级电容器备受关注。在此类超级电容器中,一体式超级电容器具有更强的抗形变能力和更低的界面电阻,可以承受弯曲、扭曲或拉伸等各种形变,在可穿戴设备中得到广泛应用。由于在实际使用中,一体式超级电容器在长时间应力作用或在低温环境下,会因过度变形而损坏,因此研发功能性一体式超级电容器是当前的研究重点。本文重点介绍了具有柔性、可拉伸性、自修复、耐低温等不同性能的一体式超级电容器,总结了上述一体式超级电容器的构造与应用,并对一体式超级电容器的未来发展进行展望,指出通过材料设计实现一体式超级电容器的多功能集成,并深入探究其界面作用机制,将是一体式超级电容器在柔性可穿戴设备中的重要研究方向。
Abstract:
With the growing popularity of flexible wearable devices,flexible energy storage devices have witnessed rapid development. Supercapacitors,known for their high power density,fast charging-discharging rates,and excellent cycling stability,have attracted significant attention. Among them,all-in-one supercapacitors exhibit superior deformation resistance and lower interfacial resistance,enabling them to withstand various forms of deformation such as bending,twisting and stretching. This makes them highly promising for applications in wearable electronics. However,in practical use,all-in-one supercapacitors may suffer from damage due to excessive deformation under prolonged stress or in low-temperature environments. Therefore,developing all-in-one supercapacitors with enhanced capabilities is a primary objective in current research. This paper highlights recent advances in all-in-one supercapacitors with properties such as flexibility,stretchability,self-healing capability,and low-temperature resistance,summarizes their constructions and applications,and discusses their future prospects, emphasizing that achieving multifunctional integration through material design and delving into their interfacial mechanisms will be crucial research directions for their application in flexible wearable devices.

参考文献/References:

[1] YUAN X M, WU P C,GAO Q,et al. Multifunctionally wearable monitoring with gelatin hydrogel electronics of liquid metals [J]. Materials Horizons,2022,9(3):961-972.
[2] WANG J, LOU H Y, MENG J J, et al. Stretchable energy storage E-skin supercapacitors and body movement sensors [J]. Sensors and Actuators B:Chemical,2020,305:127529.
[3] CHEN X,VILLA N S,ZHUANG Y F,et al. Stretchable supercapacitors as emergent energy storage units for health monitoring bioelectronics [J]. Advanced Energy Materials,2020,10(4):1902769.
[4] PARK H, KIM J W,HONG S Y, et al. Dynamically stretchable supercapacitor for powering an integrated biosensor in an all-in-one textile system [J]. ACS Nano,2019,13(9):10469-10480.
[5] HSIAO C, LEE C, TAI N. Biomass-derived three-dimensional carbon framework for a flexible fibrous supercapacitor and its application as a wearable smart textile [J]. RSC Advances,2020,10(12):6960-6972.
[6] ZHANG D D, HUANG T Y, DUAN L. Emerging self-emissive technologies for flexible displays [J]. Advanced Materials,2020,32(15):1902391
[7] GAO H,LI J R,ZHANG F H,et al. The research status and challenges of shape memory polymer-based flexible electronics [J]. Materials Horizons,2019,6(5):931-944.
[8] WANG F X, WU X W, YUAN X H, et al. Latest advances in supercapacitors:from new electrode materials to novel device designs [J]. Chemical Society Reviews,2017,46(22):6816-6854.
[9] YIN L,LI S,LIU X H,et al. Ionic liquid electrolytes in electric double layer capacitors [J]. Science China Materials,2019,62(11):1537-1555.
[10] CHEN R,YU M,SAHU R P,et al. The development of pseudocapacitor electrodes and devices with high active mass loading [J]. Advanced Energy Materials,2020,10(20):1903848.
[11] HIMADRI REDDY P C, AMALRAJ J,RANGANATHA S,et al. A review on effect of conducting polymers on carbon-based electrode materials for electrochemical supercapacitors [J]. Synthetic Metals,2023,298:117447.
[12] CHEN X L, PAUL R, DAI L M. Carbon-based supercapacitors for efficient energy storage [J]. National Science Review,2017,4(3):453-489.
[13] LIBICH J, MáCA J, VONDRáK J, et al. Supercapacitors:properties and applications [J]. Journal of Energy Storage,2018,17:224-227.
[14] ZHOU Q W, FU L, ZHU J W. Electrochemical sensors go nano:carbon nanomaterials for ultrasensitive heavy metal analysis [J]. Current Nanoscience,2025,21(4):596-612.
[15] 张怀康,吴可新,程诚,等. 化学浴法合成氢氧化镍@碳纳米管复合材料及其电化学性能研究[J]. 当代化工研究,2025(2):194-196.
[16] ZHANG X, LI F Z, ZHU C Y,et al. Effect of low-dose irradiation on the properties of GO and GO membrane [J]. Radiation Physics and Chemistry,2022,191:109864.
[17] 宁佳鑫,邓勇,李亮. MXene及其复合材料的制备与应用研究进展[J].武汉工程大学学报,2022,44(4):371-376,407.
[18] YIN B S, ZHANG S W, KE K, et al. Advanced deformable all-in-one hydrogel supercapacitor based on conducting polymer:toward integrated mechanical and capacitive performance [J]. Journal of Alloys and Compounds,2019,805:1044-1051.
[19] GUO Y,ZHENG K Q,WAN P B. A flexible stretchable hydrogel electrolyte for healable all-in-one configured supercapacitors [J]. Small,2018,14(14):1704497.
[20] SUN X W, LI L S, HE S Y, et al. Covalent bonding homo-all-in-one configuration enables a flexible supercapacitor with superior mechanical durability exceeding 50 000 cyclic deformations [J]. ACS Applied Energy Materials,2023,6(11):6214-6226.
[21] PENG X,PENG L L,WU C Z,et al. Two dimensional nanomaterials for flexible supercapacitors [J]. Chemical Society Reviews,2014,43(10):3303-3323.
[22] MIAO L, SONG Z Y, ZHU D Z, et al. Recent advances in carbon-based supercapacitors [J]. Materials Advances,2020,1(5):945-966.
[23] QIN K Q, KANG J L, LI J J, et al. Continuously hierarchical nanoporous graphene film for flexible solid-state supercapacitors with excellent performance [J]. Nano Energy,2016,24:158-164.
[24] PENG H R, YAO B, WEI X J, et al. Pore and heteroatom engineered carbon foams for supercapacitors [J]. Advanced Energy Materials,2019,9(19):1803665.
[25] YU D S, ZHAI S L,JIANG W C,et al. Transforming pristine carbon fiber tows into high performance solid-state fiber supercapacitors [J]. Advanced Materials,2015,27(33):4895-4901.
[26] 陈奇,李海朝. 碳纳米结构构建:十二烷基二甲基苄基氯化铵@氯化钠体系[J]. 化学通报,2023,86(5):635-639.
[27] LI H F, HAN C P, HUANG Y, et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte [J]. Energy & Environmental Science,2018,11(4):941-951.
[28] WANG K, ZHANG X, LI C, et al. Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance [J]. Advanced Materials,2015,27(45):7451-7457.
[29] ZHANG K,ZHANG X Y, ZOU B H, et al. A leather-based electrolyte for all-in-one configured flexible supercapacitors [J]. Chemical Communications,2022,58(50):7070-7073.
[30] HAN L,HUANG H L,FU X B,et al. A flexible,high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor [J]. Chemical Engineering Journal,2020,392:123733.
[31] YU J L, ZHOU J, YAO P P, et al. A stretchable high performance all-in-one fiber supercapacitor [J]. Journal of Power Sources,2019,440:227150.
[32] Lü Z S,TANG Y X,ZHU Z Q,et al. Honeycomb-lantern-inspired 3D stretchable supercapacitors with enhanced specific areal capacitance [J]. Advanced Materials,2018,30(50):1805468.
[33] HE S S,QIU L B,WANG L,et al. A three-dimensionally stretchable high performance supercapacitor [J]. Journal of Materials Chemistry A,2016,4(39):14968-14973.
[34] XIE Y Z, LIU Y, ZHAO Y D, et al. Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode [J]. Journal of Materials Chemistry A,2014,2(24):9142-9149.
[35] LEE H,LEE G,YUN J,et al. Facile fabrication of a fully biodegradable and stretchable serpentine-shaped wire supercapacitor [J]. Chemical Engineering Journal,2019,366:62-71.
[36] WANG S L,LIU N S,SU J,et al. Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs [J]. ACS Nano,2017,11(2):2066-2074.
[37] ZHANG R Z, YAN K, PALUMBO A, et al. A stretchable and bendable all-solid-state pseudocapacitor with dodecylbenzenesulfonate-doped polypyrrole-coated vertically aligned carbon nanotubes partially embedded in PDMS [J]. Nanotechnology,2019,30(9):095401.
[38] JEONG H T. Electrochemical performances of semi-transparent and stretchable supercapacitor composed of nanocarbon materials [J]. Carbon Letters,2020,30(1):55-61.
[39] MAITY D,TADE R,SABNIS A S. Development of bio-based polyester-urethane-acrylate (PUA) from citric acid for UV-curable coatings [J]. Journal of Coatings Technology and Research,2023,20(3):1083-1097.
[40] ABDEL-HAKIM A, EL-MOGY S A,EL-ZAYAT M M. Radiation crosslinking of acrylic rubber/styrene butadiene rubber blends containing polyfunctional monomers [J]. Radiation Physics and Chemistry,2019,157:91-96.
[41] QI F Y, ZHAO C, WANG C Y, et al. Polyaniline electrochemically deposited on tailored metal mesh for dynamically stretchable supercapacitors [J]. Journal of The Electrochemical Society,2019,166(16):A3932-A3939.
[42] LEE H,JUNG G,KEUM K, et al. A textile-based temperature-tolerant stretchable supercapacitor for wearable electronics [J]. Advanced Functional Materials,2021,31(50):2106491.
[43] WEI X X, WANG J L, MA H, et al. Super-strong CNT composite yarn with tight CNT packing via a compress-stretch process [J]. Nanoscale,2022,14(25):9078-9085.
[44] XIANG X,YANG Z P,DI J T,et al. In-situ twisting for stabilizing and toughening conductive graphene yarns [J]. Nanoscale,2017,9(32):11523-11529.
[45] BAO S X,CHEN B,ZHANG Y M,et al. Synthesis of coated solvent impregnated resins by PVA cross-linked with vapor-phase glutaraldehyde for adsorption of vanadium (IV)[J]. Reactive and Functional Polymers,2018,128:58-66.
[46] YANG J,HU X Y,FANG X H,et al. Tough and redox-mediated alkaline gel polymer electrolyte membrane for flexible supercapacitor with high energy density and low temperature resistance [J]. Journal of Membrane Science,2022,650:120386.
[47] ZENG J, DONG L B, SHA W X, et al. Highly stretchable,compressible and arbitrarily deformable all-hydrogel soft supercapacitors [J]. Chemical Engineering Journal,2020,383:123098.
[48] HU M M,WANG J Q,LIU J,et al. An intrinsically compressible and stretchable all-in-one configured supercapacitor [J]. Chemical Communications,2018,54(48):6200-6203.
[49] WANG X,XING Z H,YANG C,et al. A Stretchable and healable gelatin hydrogel assisted by Hofmeister effect for all-in-one flexible supercapacitor [J]. Energy Technology,2022,10(12):2200897.
[50] LI P P,JIN Z Y,PENG L L,et al. Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels [J]. Advanced Materials,2018,30(18):1800124.
[51] TAN X H, CHU K B, CHEN Z J, et al. Recent advances in self-healing hydrogel composites for flexible wearable electronic devices [J]. Nano Research Energy,2024,3(3):e9120123.
[52] TANG L J, MA Y, YANG C X,et al. A self-healing hydrogel derived flexible all-solid-state supercapacitors based on dynamic borate bonds [J]. Journal of Industrial and Engineering Chemistry,2023,118:511-518.
[53] ZHAO L J, ZHANG H, TANG N, et al. Natural phytic acid-assisted polyaniline/poly(vinyl alcohol) hydrogel showing self-reinforcing features [J]. ACS Applied Materials & Interfaces,2023,15(35):41927-41936.
[54] SHI Y H,ZHANG Y,JIA L M,et al. Stretchable and self-healing integrated all-gel-state supercapacitors enabled by a notch-insensitive supramolecular hydrogel electrolyte [J]. ACS Applied Materials & Interfaces,2018,10(42):36028-36036.
[55] GAO X J,HU Q Z,SUN K J,et al. A novel all-in-one integrated flexible supercapacitor based on self-healing hydrogel electrolyte [J]. Journal of Alloys and Compounds,2021,888:161554.
[56] JIAN Y K,HANDSCHUH-WANG S,ZHANG J W,et al. Biomimetic anti-freezing polymeric hydrogels:keeping soft-wet materials active in cold environments [J]. Materials Horizons,2021,8(2):351-369.
[57] MORELLE X P,ILLEPERUMA W R,TIAN K,et al. Highly stretchable and tough hydrogels below water freezing temperature [J]. Advanced Materials,2018,30(35):1801541.
[58] CHEN M F, ZHOU W J, WANG A R, et al. Anti-freezing flexible aqueous Zn-MnO2 batteries working at -35 ℃ enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte [J]. Journal of Materials Chemistry A,2020,8(14):6828-6841.
[59] XIA S,SONG S X,LI Y,et al. Highly sensitive and wearable gel-based sensors with a dynamic physically cross-linked structure for strain-stimulus detection over a wide temperature range [J]. Journal of Materials Chemistry C,2019,7(36):11303-11314.
[60] FAN K Q, LIU S, FENG W B, et al. Janus POSS-based hydrogel electrolytes with highly stretchable and low-temperature resistant performances for all-in-one supercapacitors [J]. Journal of Applied Polymer Science,2024,141(2):e54793.
[61] LIU C L,ZENG B X,JIANG L,et al. Tough and self-healable double-network hydrogel for environmentally resistant all-in-one supercapacitors and strain sensors [J]. Chemical Engineering Journal,2023,460:141787.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-02-29
基金项目:湖北省重点研发专项(2023BAB100)
作者简介:曾世洲,硕士研究生。Email:3469623248@qq.com
*通信作者:季家友,博士,教授。Email:jijy@wit.edu.cn
李 亮,博士,教授。Email:msell08@163.com
引文格式:曾世洲,姚文子,黄华波,等. 一体式超级电容器的研究进展[J]. 武汉工程大学学报,2025,47(5):516-523.

更新日期/Last Update: 2025-11-03