[1] YUAN X M, WU P C,GAO Q,et al. Multifunctionally wearable monitoring with gelatin hydrogel electronics of liquid metals [J]. Materials Horizons,2022,9(3):961-972.
[2] WANG J, LOU H Y, MENG J J, et al. Stretchable energy storage E-skin supercapacitors and body movement sensors [J]. Sensors and Actuators B:Chemical,2020,305:127529.
[3] CHEN X,VILLA N S,ZHUANG Y F,et al. Stretchable supercapacitors as emergent energy storage units for health monitoring bioelectronics [J]. Advanced Energy Materials,2020,10(4):1902769.
[4] PARK H, KIM J W,HONG S Y, et al. Dynamically stretchable supercapacitor for powering an integrated biosensor in an all-in-one textile system [J]. ACS Nano,2019,13(9):10469-10480.
[5] HSIAO C, LEE C, TAI N. Biomass-derived three-dimensional carbon framework for a flexible fibrous supercapacitor and its application as a wearable smart textile [J]. RSC Advances,2020,10(12):6960-6972.
[6] ZHANG D D, HUANG T Y, DUAN L. Emerging self-emissive technologies for flexible displays [J]. Advanced Materials,2020,32(15):1902391
[7] GAO H,LI J R,ZHANG F H,et al. The research status and challenges of shape memory polymer-based flexible electronics [J]. Materials Horizons,2019,6(5):931-944.
[8] WANG F X, WU X W, YUAN X H, et al. Latest advances in supercapacitors:from new electrode materials to novel device designs [J]. Chemical Society Reviews,2017,46(22):6816-6854.
[9] YIN L,LI S,LIU X H,et al. Ionic liquid electrolytes in electric double layer capacitors [J]. Science China Materials,2019,62(11):1537-1555.
[10] CHEN R,YU M,SAHU R P,et al. The development of pseudocapacitor electrodes and devices with high active mass loading [J]. Advanced Energy Materials,2020,10(20):1903848.
[11] HIMADRI REDDY P C, AMALRAJ J,RANGANATHA S,et al. A review on effect of conducting polymers on carbon-based electrode materials for electrochemical supercapacitors [J]. Synthetic Metals,2023,298:117447.
[12] CHEN X L, PAUL R, DAI L M. Carbon-based supercapacitors for efficient energy storage [J]. National Science Review,2017,4(3):453-489.
[13] LIBICH J, MáCA J, VONDRáK J, et al. Supercapacitors:properties and applications [J]. Journal of Energy Storage,2018,17:224-227.
[14] ZHOU Q W, FU L, ZHU J W. Electrochemical sensors go nano:carbon nanomaterials for ultrasensitive heavy metal analysis [J]. Current Nanoscience,2025,21(4):596-612.
[15] 张怀康,吴可新,程诚,等. 化学浴法合成氢氧化镍@碳纳米管复合材料及其电化学性能研究[J]. 当代化工研究,2025(2):194-196.
[16] ZHANG X, LI F Z, ZHU C Y,et al. Effect of low-dose irradiation on the properties of GO and GO membrane [J]. Radiation Physics and Chemistry,2022,191:109864.
[17] 宁佳鑫,邓勇,李亮. MXene及其复合材料的制备与应用研究进展[J].武汉工程大学学报,2022,44(4):371-376,407.
[18] YIN B S, ZHANG S W, KE K, et al. Advanced deformable all-in-one hydrogel supercapacitor based on conducting polymer:toward integrated mechanical and capacitive performance [J]. Journal of Alloys and Compounds,2019,805:1044-1051.
[19] GUO Y,ZHENG K Q,WAN P B. A flexible stretchable hydrogel electrolyte for healable all-in-one configured supercapacitors [J]. Small,2018,14(14):1704497.
[20] SUN X W, LI L S, HE S Y, et al. Covalent bonding homo-all-in-one configuration enables a flexible supercapacitor with superior mechanical durability exceeding 50 000 cyclic deformations [J]. ACS Applied Energy Materials,2023,6(11):6214-6226.
[21] PENG X,PENG L L,WU C Z,et al. Two dimensional nanomaterials for flexible supercapacitors [J]. Chemical Society Reviews,2014,43(10):3303-3323.
[22] MIAO L, SONG Z Y, ZHU D Z, et al. Recent advances in carbon-based supercapacitors [J]. Materials Advances,2020,1(5):945-966.
[23] QIN K Q, KANG J L, LI J J, et al. Continuously hierarchical nanoporous graphene film for flexible solid-state supercapacitors with excellent performance [J]. Nano Energy,2016,24:158-164.
[24] PENG H R, YAO B, WEI X J, et al. Pore and heteroatom engineered carbon foams for supercapacitors [J]. Advanced Energy Materials,2019,9(19):1803665.
[25] YU D S, ZHAI S L,JIANG W C,et al. Transforming pristine carbon fiber tows into high performance solid-state fiber supercapacitors [J]. Advanced Materials,2015,27(33):4895-4901.
[26] 陈奇,李海朝. 碳纳米结构构建:十二烷基二甲基苄基氯化铵@氯化钠体系[J]. 化学通报,2023,86(5):635-639.
[27] LI H F, HAN C P, HUANG Y, et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte [J]. Energy & Environmental Science,2018,11(4):941-951.
[28] WANG K, ZHANG X, LI C, et al. Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance [J]. Advanced Materials,2015,27(45):7451-7457.
[29] ZHANG K,ZHANG X Y, ZOU B H, et al. A leather-based electrolyte for all-in-one configured flexible supercapacitors [J]. Chemical Communications,2022,58(50):7070-7073.
[30] HAN L,HUANG H L,FU X B,et al. A flexible,high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor [J]. Chemical Engineering Journal,2020,392:123733.
[31] YU J L, ZHOU J, YAO P P, et al. A stretchable high performance all-in-one fiber supercapacitor [J]. Journal of Power Sources,2019,440:227150.
[32] Lü Z S,TANG Y X,ZHU Z Q,et al. Honeycomb-lantern-inspired 3D stretchable supercapacitors with enhanced specific areal capacitance [J]. Advanced Materials,2018,30(50):1805468.
[33] HE S S,QIU L B,WANG L,et al. A three-dimensionally stretchable high performance supercapacitor [J]. Journal of Materials Chemistry A,2016,4(39):14968-14973.
[34] XIE Y Z, LIU Y, ZHAO Y D, et al. Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode [J]. Journal of Materials Chemistry A,2014,2(24):9142-9149.
[35] LEE H,LEE G,YUN J,et al. Facile fabrication of a fully biodegradable and stretchable serpentine-shaped wire supercapacitor [J]. Chemical Engineering Journal,2019,366:62-71.
[36] WANG S L,LIU N S,SU J,et al. Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs [J]. ACS Nano,2017,11(2):2066-2074.
[37] ZHANG R Z, YAN K, PALUMBO A, et al. A stretchable and bendable all-solid-state pseudocapacitor with dodecylbenzenesulfonate-doped polypyrrole-coated vertically aligned carbon nanotubes partially embedded in PDMS [J]. Nanotechnology,2019,30(9):095401.
[38] JEONG H T. Electrochemical performances of semi-transparent and stretchable supercapacitor composed of nanocarbon materials [J]. Carbon Letters,2020,30(1):55-61.
[39] MAITY D,TADE R,SABNIS A S. Development of bio-based polyester-urethane-acrylate (PUA) from citric acid for UV-curable coatings [J]. Journal of Coatings Technology and Research,2023,20(3):1083-1097.
[40] ABDEL-HAKIM A, EL-MOGY S A,EL-ZAYAT M M. Radiation crosslinking of acrylic rubber/styrene butadiene rubber blends containing polyfunctional monomers [J]. Radiation Physics and Chemistry,2019,157:91-96.
[41] QI F Y, ZHAO C, WANG C Y, et al. Polyaniline electrochemically deposited on tailored metal mesh for dynamically stretchable supercapacitors [J]. Journal of The Electrochemical Society,2019,166(16):A3932-A3939.
[42] LEE H,JUNG G,KEUM K, et al. A textile-based temperature-tolerant stretchable supercapacitor for wearable electronics [J]. Advanced Functional Materials,2021,31(50):2106491.
[43] WEI X X, WANG J L, MA H, et al. Super-strong CNT composite yarn with tight CNT packing via a compress-stretch process [J]. Nanoscale,2022,14(25):9078-9085.
[44] XIANG X,YANG Z P,DI J T,et al. In-situ twisting for stabilizing and toughening conductive graphene yarns [J]. Nanoscale,2017,9(32):11523-11529.
[45] BAO S X,CHEN B,ZHANG Y M,et al. Synthesis of coated solvent impregnated resins by PVA cross-linked with vapor-phase glutaraldehyde for adsorption of vanadium (IV)[J]. Reactive and Functional Polymers,2018,128:58-66.
[46] YANG J,HU X Y,FANG X H,et al. Tough and redox-mediated alkaline gel polymer electrolyte membrane for flexible supercapacitor with high energy density and low temperature resistance [J]. Journal of Membrane Science,2022,650:120386.
[47] ZENG J, DONG L B, SHA W X, et al. Highly stretchable,compressible and arbitrarily deformable all-hydrogel soft supercapacitors [J]. Chemical Engineering Journal,2020,383:123098.
[48] HU M M,WANG J Q,LIU J,et al. An intrinsically compressible and stretchable all-in-one configured supercapacitor [J]. Chemical Communications,2018,54(48):6200-6203.
[49] WANG X,XING Z H,YANG C,et al. A Stretchable and healable gelatin hydrogel assisted by Hofmeister effect for all-in-one flexible supercapacitor [J]. Energy Technology,2022,10(12):2200897.
[50] LI P P,JIN Z Y,PENG L L,et al. Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels [J]. Advanced Materials,2018,30(18):1800124.
[51] TAN X H, CHU K B, CHEN Z J, et al. Recent advances in self-healing hydrogel composites for flexible wearable electronic devices [J]. Nano Research Energy,2024,3(3):e9120123.
[52] TANG L J, MA Y, YANG C X,et al. A self-healing hydrogel derived flexible all-solid-state supercapacitors based on dynamic borate bonds [J]. Journal of Industrial and Engineering Chemistry,2023,118:511-518.
[53] ZHAO L J, ZHANG H, TANG N, et al. Natural phytic acid-assisted polyaniline/poly(vinyl alcohol) hydrogel showing self-reinforcing features [J]. ACS Applied Materials & Interfaces,2023,15(35):41927-41936.
[54] SHI Y H,ZHANG Y,JIA L M,et al. Stretchable and self-healing integrated all-gel-state supercapacitors enabled by a notch-insensitive supramolecular hydrogel electrolyte [J]. ACS Applied Materials & Interfaces,2018,10(42):36028-36036.
[55] GAO X J,HU Q Z,SUN K J,et al. A novel all-in-one integrated flexible supercapacitor based on self-healing hydrogel electrolyte [J]. Journal of Alloys and Compounds,2021,888:161554.
[56] JIAN Y K,HANDSCHUH-WANG S,ZHANG J W,et al. Biomimetic anti-freezing polymeric hydrogels:keeping soft-wet materials active in cold environments [J]. Materials Horizons,2021,8(2):351-369.
[57] MORELLE X P,ILLEPERUMA W R,TIAN K,et al. Highly stretchable and tough hydrogels below water freezing temperature [J]. Advanced Materials,2018,30(35):1801541.
[58] CHEN M F, ZHOU W J, WANG A R, et al. Anti-freezing flexible aqueous Zn-MnO2 batteries working at -35 ℃ enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte [J]. Journal of Materials Chemistry A,2020,8(14):6828-6841.
[59] XIA S,SONG S X,LI Y,et al. Highly sensitive and wearable gel-based sensors with a dynamic physically cross-linked structure for strain-stimulus detection over a wide temperature range [J]. Journal of Materials Chemistry C,2019,7(36):11303-11314.
[60] FAN K Q, LIU S, FENG W B, et al. Janus POSS-based hydrogel electrolytes with highly stretchable and low-temperature resistant performances for all-in-one supercapacitors [J]. Journal of Applied Polymer Science,2024,141(2):e54793.
[61] LIU C L,ZENG B X,JIANG L,et al. Tough and self-healable double-network hydrogel for environmentally resistant all-in-one supercapacitors and strain sensors [J]. Chemical Engineering Journal,2023,460:141787.