|本期目录/Table of Contents|

[1]余心洁,樊昊心*.稳定性同位素探针技术及其微生物生态学应用[J].武汉工程大学学报,2025,47(05):531-538.[doi:10.19843/j.cnki.CN42-1779/TQ.202404001]
 YU Xinjie,FAN Haoxin*.DNA-based stable isotope probing and its application in microbial ecology[J].Journal of Wuhan Institute of Technology,2025,47(05):531-538.[doi:10.19843/j.cnki.CN42-1779/TQ.202404001]
点击复制

稳定性同位素探针技术及其微生物生态学应用
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年05期
页码:
531-538
栏目:
现代大化工
出版日期:
2025-10-31

文章信息/Info

Title:
DNA-based stable isotope probing and its application in microbial ecology
文章编号:
1674 - 2869(2025)05 - 0531 - 08
作者:
武汉工程大学环境生态与生物工程学院,湖北 武汉 430205
Author(s):
School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
Keywords:
分类号:
S154.3
DOI:
10.19843/j.cnki.CN42-1779/TQ.202404001
文献标志码:
A
摘要:
稳定性同位素核酸探针技术(DNA-SIP)是近20年来发展起来的一种新兴技术,结合了同位素示踪和分子生物学分类的优势,能够在环境中分离鉴定代谢活跃的功能微生物。首先介绍了DNA-SIP的基本原理,包括稳定同位素底物的选择、培养条件设定及下游分子分析方法,并讨论了高通量测序与生物信息学发展对分辨率和灵敏度提升的重要作用。在此基础上,综述了DNA-SIP在微生物生态学中的应用进展:一是在碳、氮、硫等元素生物地球化学循环中揭示了关键功能类群;二是在根际微生物生态研究中阐明了植物-微生物互作及其对养分吸收的贡献;三是在污染微生物生态学中鉴定了多种有机污染物的主要降解者。尽管DNA-SIP面临交叉喂养、同位素灵敏度差异和数据分析复杂等挑战,结合宏基因组学及单细胞拉曼光谱等新技术将进一步扩展其应用前景。DNA-SIP为解析复杂环境中微生物的功能作用提供了独特而强有力的工具,在环境科学与微生物生态学研究中展现出广阔的发展潜力。
Abstract:
DNA-based stable isotope probing (DNA-SIP) is an emerging technique developed over the past two decades that combines the strengths of isotope tracing and molecular biology, enabling the isolation and identification of metabolically active microorganisms in complex environments. This review first outlines the fundamental principles of DNA-SIP, including the selection of isotope-labeled substrates, cultivation conditions, and downstream molecular analysis methods, and highlights the importance of advances in high-throughput sequencing and bioinformatics for improving resolution and sensitivity. Building on this foundation, we summarized recent applications of DNA-SIP in microbial ecology: (i) revealing key functional groups involved in biogeochemical cycles of carbon, nitrogen, and sulfur; (ii) elucidating plant-microbe interactions in the rhizosphere and their contribution to nutrient acquisition; and (iii) identifying major degraders of organic pollutants in contaminated environments. Despite challenges such as cross-feeding, differential isotope incorporation, and complex data analysis, the integration of DNA-SIP with metagenomics, single-cell Raman spectroscopy, and other emerging approaches is expected to further expand its utility. Overall, DNA-SIP provides a powerful and unique tool for disentangling microbial functions in situ and holds broad prospects for advancing research in environmental science and microbial ecology.

参考文献/References:

[1] MESELSON M, STAHL F W. The replication of DNA in Escherichia coli [J]. Proceedings of the National Academy of Sciences of the United States of America, 1958, 44(7): 671-682.
[2] BASSHAM J A, BENSON A A, KAY L D, et al. The path of carbon in photosynthesis. xxi. the cyclic regeneration of carbon dioxide acceptor1 [J]. Journal of the American Chemical Society, 1954, 76(7): 1760-1770.
[3] RADAJEWSKI S, INESON P, PAREKH N R, et al. Stable-isotope probing as a tool in microbial ecology [J]. Nature, 2000, 403(6770): 646-649.
[4] ADRIAN L, MARCO-URREA E. Isotopes in geobiochemistry: tracing metabolic pathways in microorganisms of environmental relevance with stable isotopes [J]. Current Opinion in Biotechnology, 2016, 41: 19-25.
[5] UHLíK O, JECNá K, LEIGH M B, et al. DNA-based stable isotope probing: a link between community structure and function [J]. Science of the Total Environment, 2009, 407(12): 3611-3619.
[6] DUMONT M G, MURRELL J C. Stable isotope probing-linking microbial identity to function [J]. Nature Reviews Microbiology, 2005, 3(6): 499-504.
[7] BOSCHKER H T S, NOLD S C, WELLSBURY P, et al. Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers [J]. Nature, 1998, 392(6678): 801-805.
[8] MCDONALD I R, RADAJEWSKI S, MURRELL J C. Stable isotope probing of nucleic acids in methanotrophs and methylotrophs: a review [J]. Organic Geochemistry, 2005, 36(5): 779-787.
[9] SEIFERT J, TAUBERT M, JEHMLICH N, et al. Protein-based stable isotope probing (protein-SIP) in functional metaproteomics [J]. Mass Spectrometry Reviews, 2012, 31(6): 683-697.
[10] LUEDERS T, DUMONT M G, BRADFORD L, et al. RNA-stable isotope probing: from carbon flow within key microbiota to targeted transcriptomes [J]. Current Opinion in Biotechnology, 2016, 41: 83-89.
[11] LI Z, YAO Q M, GUO X, et al. Genome-resolved proteomic stable isotope probing of soil microbial communities using 13CO2 and 13C-methanol [J]. Frontiers in Microbiology, 2019, 10: 2706.
[12] TRUBL G, KIMBREL J A, LIQUET-GONZALEZ J, et al. Active virus-host interactions at sub-freezing temperatures in Arctic peat soil [J]. Microbiome, 2021, 9(1): 208.
[13] LIU H Y, HU H W, HUANG X, et al. Canonical ammonia oxidizers, rather than comammox Nitrospira, dominated autotrophic nitrification during the mineralization of organic substances in two paddy soils [J]. Soil Biology and Biochemistry, 2021, 156: 108192.
[14] BERRY D, MADER E, LEE T K, et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(2): E194-E203.
[15] BLAZEWICZ S J, SCHWARTZ E, FIRESTONE M K. Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil [J]. Ecology, 2014, 95(5): 1162-1172.
[16] LIU B L, HOU L J, ZHENG Y L, et al. Dark carbon fixation in intertidal sediments: controlling factors and driving microorganisms [J]. Water Research, 2022, 216: 118381.
[17] HARTER J, KRAUSE H M, SCHUETTLER S, et al. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community[J]. The ISME Journal, 2014, 8(3): 660-674.
[18] GEORG C, MINGRELIA E, RACHEL C, et al. Technical considerations for the use of 15N-DNA stable-isotope probing for functional microbial activity in soils [J]. Rapid Communications in Mass Spectrometry : RCM, 2005, 19(11): 1424-1428.
[19] DERITO C M, PUMPHREY G M, MADSEN E L. Use of field-based stable isotope probing to identify adapted populations and track carbon flow through a phenol-degrading soil microbial community [J]. Applied and Environmental Microbiology, 2005, 71(12): 7858-7865.
[20] MARTIN V B, NICO J, MARTIN T, et al. Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology [J]. The ISME Journal, 2013, 7(10): 1877-1885.
[21] 邹文萱,沈菊培,张丽梅,等. 定量稳定性同位素探针技术及其在微生物生态学研究中的应用 [J]. 应用生态学报, 2021, 32(7): 2615-2622.
[22] PURCELL A M, DIJKSTRA P, FINLEY B, et al. Quantitative stable isotope probing with H218O to measure taxon‐specific microbial growth [J]. Soil Science Society of America,2020,84(5):1503-1518.
[23] HAYER M, SCHWARTZ E, MARKS J C, et al. Identification of growing bacteria during litter decomposition in freshwater through H218O quantitative stable isotope probing [J]. Environmental Microbiology Reports, 2016, 8(6): 975-982.
[24] EILEEN K, SARANYA K, SONJA W, et al. A putatively new family of alphaproteobacterial chloromethane degraders from a deciduous forest soil revealed by stable isotope probing and metagenomics [J]. Environmental Microbiome, 2022, 17(1): 24.
[25] WOLF-RAINER A. Applications and impacts of stable isotope probing for analysis of microbial interactions [J]. Applied Microbiology and Biotechnology, 2014, 98(11): 4817-4828.
[26] DONG W, YANG Q, GEORGE T S, et al. Investigating bacterial coupled assimilation of fertilizer-nitrogen and crop residue-carbon in upland soils by DNA-qSIP[J]. Science of the Total Environment, 2022, 845: 157279.
[27] BAI X J, ZHAI G Q, WANG B R, et al. Litter quality controls the contribution of microbial carbon to main microbial groups and soil organic carbon during its decomposition [J]. Biology and Fertility of Soils, 2024, 60(2): 167-181.
[28] LIU J L,XUE C X, WANG J Y, et al. Oceanospi-rillales containing the DMSP lyase DddD are key utilisers of carbon from DMSP in coastal seawater [J]. Microbiome, 2022, 10(1): 110.
[29] MAOSHENG Z, ZHICHAO T, ZIMIN C, et al. Ubiquitous occurrence and functional dominance of comammox Nitrospira in full-scale wastewater treatment plants [J]. Water Research, 2023, 236: 119931.
[30] PAN K L, GAO J F, LI H Y, et al. Ammonia-oxidizing bacteria dominate ammonia oxidation in a full-scale wastewater treatment plant revealed by DNA-based stable isotope probing [J]. Bioresource Technology, 2018, 256: 152-159.
[31] MORANDO M, CAPONE D G. Intraclade heterogeneity in nitrogen utilization by marine prokaryotes revealed using stable isotope probing coupled with tag sequencing (Tag-SIP) [J]. Frontiers in Microbiology, 2016, 7: 1932.
[32] MARTIN T, CAROLINA G, M ALEXANDRA H, et al. Methylamine as a nitrogen source for microorganisms from a coastal marine environment [J]. Environmental Microbiology,2017,19(6):2246-2257.
[33] ORSI W D, SMITH J M, LIU S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean [J]. The ISME Journal, 2016, 10(9): 2158-2173.
[34] LIU R, HAN C, KANG Y, et al. Active microbial taxa preferentially assimilate inorganic nitrogen in acidic upland soils using a 15N-DNA-SIP approach [J]. Soil Biology and Biochemistry, 2024, 188: 109226.
[35] WANG H H, WANG J, GE C, et al. Fungi dominated the incorporation of 13C-CO2 into microbial biomass in tomato rhizosphere soil under different CO2 concentrations [J]. Microorganisms,2021,9(10): 16.
[36] PRUDENCE S M, NEWITT J T, WORSLEY S F, et al. Soil, senescence and exudate utilisation: characterisation of the?Paragon var. spring bread wheat root microbiome [J]. Environmental Microbiome, 2021, 16(1): 12.
[37] LI D, ZHANG J, GRUDA N S, et al. The regulation of gross nitrogen transformation rates in greenhouse soil cultivated with cucumber plants under elevated atmospheric [CO2] and increased soil temperature [J]. Geoderma, 2023, 439: 116680.
[38] MAU R L, LIU C M, AZIZ M, et al. Linking soil bacterial biodiversity and soil carbon stability [J]. The ISME Journal, 2015, 9(6): 1477-1480.
[39] BARNETT S E, YOUNGBLUT N D, BUCKLEY D H. Bacterial community dynamics explain carbon mineralization and assimilation in soils of different land-use history [J]. Environmental Microbiology, 2022, 24(11): 5230-5247.
[40] PENGFA L, JIA L, MUHAMMAD S, et al. Reduced chemodiversity suppresses rhizosphere microbiome functioning in the mono-cropped agroecosystems [J]. Microbiome, 2022, 10(1): 108.
[41] HU L F, TAN X Y, LU L L, et al. DNA-SIP delineates unique microbial communities in the rhizosphere of the hyperaccumulator Sedum alfredii which are beneficial to Cd phytoextraction [J]. Ecotoxicology and Environmental Safety, 2024, 272: 116016.
[42] ZHANG M, LI Z, H?GGBLOM M M, et al. Characterization of nitrate-dependent as(iii)-oxidizing communities in arsenic-contaminated soil and investigation of their metabolic potentials by the combination of DNA-stable isotope probing and metagenomics [J]. Environmental Science and Technology, 2020, 54(12): 7366-7377.
[43] ZHANG X, LI J B, ZHANG D Y, et al. Unveiling the novel role of ryegrass rhizospheric metabolites in benzo[a]pyrene biodegradation [J]. Environment International, 2023, 180: 108215.
[44] XU Y F, TENG Y, WANG X M, et al. Endogenous biohydrogen from a rhizobium-legume association drives microbial biodegradation of polychlorinated biphenyl in contaminated soil [J]. Environment International, 2023, 176: 107962.
[45] JIANG L F, ZHANG D Y, SONG M K, et al. The positive role of root decomposition on the bioremediation of organic pollutants contaminated soil: a case study using PCB-9 as a model compound [J]. Soil Biology and Biochemistry, 2022, 171: 108726.
[46] LEMMEL F, MAUNOURY-DANGER F, LEYVAL C, et al. DNA stable isotope probing reveals contrasted activity and phenanthrene-degrading bacteria identity in a gradient of anthropized soils [J]. FEMS Microbiol Ecol, 2019, 95(12): fiz181.
[47] LIAN L N, XING Y, ZHANG D Y, et al. Comparative analysis of DNA-SIP and magnetic-nanoparticle mediated isolation (MMI) on unraveling dimethoate degraders [J]. Frontiers of Environmental Science & Engineering, 2023, 18(1): 5.
[48] CUPPLES A M. Contaminant-degrading microor-ganisms identified using stable isotope probing [J]. Chemical Engineering & Technology, 2016, 39(9): 1593-1603.
[49] JIANG B, JIN N F, XING Y, et al. Unraveling uncultivable pesticide degraders via stable isotope probing (SIP) [J]. Critical Reviews in Biotechnology, 2018, 38(7): 1-24.
[50] WANG Y, HUANG W E, CUI L, et al. Single cell stable isotope probing in microbiology using Raman microspectroscopy [J]. Current Opinion in Biotechnology, 2016, 41: 34-42.
[51] WEBER F, ZALIZNYAK T, EDGCOMB V P, et al. Using stable isotope probing and raman microspectroscopy to measure growth rates of heterotrophic bacteria [J]. Applied and Environmental Microbiology,2021,87(22): 0146021.
[52] 辛雨菡,崔丽. 单细胞稳定同位素标记技术在固氮微生物中的应用研究 [J]. 微生物学报, 2020, 60(9): 1772-1783.
[53] NEUFELD J D, DUMONT M G, VOHRA J, et al. Methodological Considerations for the use of stable isotope probing in microbial ecology [J]. Microbial Ecology, 2006, 53(3): 435-442.
[54] 贾仲君. 稳定性同位素核酸探针技术DNA-SIP原理与应用 [J]. 微生物学报, 2011, 51(12):1585-1594.
[55] COYOTZI S, PRATSCHER J, MURRELL J C, et al. Targeted metagenomics of active microbial populations with stable-isotope probing [J]. Current Opinion in Biotechnology, 2016, 41: 1-8.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-04-01
基金项目:国家自然科学基金(4207039)
作者简介:余心洁,硕士研究生。Email:570371638@qq.com
*通信作者:樊昊心,博士,副教授。Email:haoxin.fan@wit.edu.cn
引文格式:余心洁,樊昊心. 稳定性同位素探针技术及其微生物生态学应用[J]. 武汉工程大学学报,2025,47(5):531-538.
稳定性同位素探针技术及其微生物生态学应用


更新日期/Last Update: 2025-11-03