[1] MESELSON M, STAHL F W. The replication of DNA in Escherichia coli [J]. Proceedings of the National Academy of Sciences of the United States of America, 1958, 44(7): 671-682.
[2] BASSHAM J A, BENSON A A, KAY L D, et al. The path of carbon in photosynthesis. xxi. the cyclic regeneration of carbon dioxide acceptor1 [J]. Journal of the American Chemical Society, 1954, 76(7): 1760-1770.
[3] RADAJEWSKI S, INESON P, PAREKH N R, et al. Stable-isotope probing as a tool in microbial ecology [J]. Nature, 2000, 403(6770): 646-649.
[4] ADRIAN L, MARCO-URREA E. Isotopes in geobiochemistry: tracing metabolic pathways in microorganisms of environmental relevance with stable isotopes [J]. Current Opinion in Biotechnology, 2016, 41: 19-25.
[5] UHLíK O, JECNá K, LEIGH M B, et al. DNA-based stable isotope probing: a link between community structure and function [J]. Science of the Total Environment, 2009, 407(12): 3611-3619.
[6] DUMONT M G, MURRELL J C. Stable isotope probing-linking microbial identity to function [J]. Nature Reviews Microbiology, 2005, 3(6): 499-504.
[7] BOSCHKER H T S, NOLD S C, WELLSBURY P, et al. Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers [J]. Nature, 1998, 392(6678): 801-805.
[8] MCDONALD I R, RADAJEWSKI S, MURRELL J C. Stable isotope probing of nucleic acids in methanotrophs and methylotrophs: a review [J]. Organic Geochemistry, 2005, 36(5): 779-787.
[9] SEIFERT J, TAUBERT M, JEHMLICH N, et al. Protein-based stable isotope probing (protein-SIP) in functional metaproteomics [J]. Mass Spectrometry Reviews, 2012, 31(6): 683-697.
[10] LUEDERS T, DUMONT M G, BRADFORD L, et al. RNA-stable isotope probing: from carbon flow within key microbiota to targeted transcriptomes [J]. Current Opinion in Biotechnology, 2016, 41: 83-89.
[11] LI Z, YAO Q M, GUO X, et al. Genome-resolved proteomic stable isotope probing of soil microbial communities using 13CO2 and 13C-methanol [J]. Frontiers in Microbiology, 2019, 10: 2706.
[12] TRUBL G, KIMBREL J A, LIQUET-GONZALEZ J, et al. Active virus-host interactions at sub-freezing temperatures in Arctic peat soil [J]. Microbiome, 2021, 9(1): 208.
[13] LIU H Y, HU H W, HUANG X, et al. Canonical ammonia oxidizers, rather than comammox Nitrospira, dominated autotrophic nitrification during the mineralization of organic substances in two paddy soils [J]. Soil Biology and Biochemistry, 2021, 156: 108192.
[14] BERRY D, MADER E, LEE T K, et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(2): E194-E203.
[15] BLAZEWICZ S J, SCHWARTZ E, FIRESTONE M K. Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil [J]. Ecology, 2014, 95(5): 1162-1172.
[16] LIU B L, HOU L J, ZHENG Y L, et al. Dark carbon fixation in intertidal sediments: controlling factors and driving microorganisms [J]. Water Research, 2022, 216: 118381.
[17] HARTER J, KRAUSE H M, SCHUETTLER S, et al. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community[J]. The ISME Journal, 2014, 8(3): 660-674.
[18] GEORG C, MINGRELIA E, RACHEL C, et al. Technical considerations for the use of 15N-DNA stable-isotope probing for functional microbial activity in soils [J]. Rapid Communications in Mass Spectrometry : RCM, 2005, 19(11): 1424-1428.
[19] DERITO C M, PUMPHREY G M, MADSEN E L. Use of field-based stable isotope probing to identify adapted populations and track carbon flow through a phenol-degrading soil microbial community [J]. Applied and Environmental Microbiology, 2005, 71(12): 7858-7865.
[20] MARTIN V B, NICO J, MARTIN T, et al. Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology [J]. The ISME Journal, 2013, 7(10): 1877-1885.
[21] 邹文萱,沈菊培,张丽梅,等. 定量稳定性同位素探针技术及其在微生物生态学研究中的应用 [J]. 应用生态学报, 2021, 32(7): 2615-2622.
[22] PURCELL A M, DIJKSTRA P, FINLEY B, et al. Quantitative stable isotope probing with H218O to measure taxon‐specific microbial growth [J]. Soil Science Society of America,2020,84(5):1503-1518.
[23] HAYER M, SCHWARTZ E, MARKS J C, et al. Identification of growing bacteria during litter decomposition in freshwater through H218O quantitative stable isotope probing [J]. Environmental Microbiology Reports, 2016, 8(6): 975-982.
[24] EILEEN K, SARANYA K, SONJA W, et al. A putatively new family of alphaproteobacterial chloromethane degraders from a deciduous forest soil revealed by stable isotope probing and metagenomics [J]. Environmental Microbiome, 2022, 17(1): 24.
[25] WOLF-RAINER A. Applications and impacts of stable isotope probing for analysis of microbial interactions [J]. Applied Microbiology and Biotechnology, 2014, 98(11): 4817-4828.
[26] DONG W, YANG Q, GEORGE T S, et al. Investigating bacterial coupled assimilation of fertilizer-nitrogen and crop residue-carbon in upland soils by DNA-qSIP[J]. Science of the Total Environment, 2022, 845: 157279.
[27] BAI X J, ZHAI G Q, WANG B R, et al. Litter quality controls the contribution of microbial carbon to main microbial groups and soil organic carbon during its decomposition [J]. Biology and Fertility of Soils, 2024, 60(2): 167-181.
[28] LIU J L,XUE C X, WANG J Y, et al. Oceanospi-rillales containing the DMSP lyase DddD are key utilisers of carbon from DMSP in coastal seawater [J]. Microbiome, 2022, 10(1): 110.
[29] MAOSHENG Z, ZHICHAO T, ZIMIN C, et al. Ubiquitous occurrence and functional dominance of comammox Nitrospira in full-scale wastewater treatment plants [J]. Water Research, 2023, 236: 119931.
[30] PAN K L, GAO J F, LI H Y, et al. Ammonia-oxidizing bacteria dominate ammonia oxidation in a full-scale wastewater treatment plant revealed by DNA-based stable isotope probing [J]. Bioresource Technology, 2018, 256: 152-159.
[31] MORANDO M, CAPONE D G. Intraclade heterogeneity in nitrogen utilization by marine prokaryotes revealed using stable isotope probing coupled with tag sequencing (Tag-SIP) [J]. Frontiers in Microbiology, 2016, 7: 1932.
[32] MARTIN T, CAROLINA G, M ALEXANDRA H, et al. Methylamine as a nitrogen source for microorganisms from a coastal marine environment [J]. Environmental Microbiology,2017,19(6):2246-2257.
[33] ORSI W D, SMITH J M, LIU S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean [J]. The ISME Journal, 2016, 10(9): 2158-2173.
[34] LIU R, HAN C, KANG Y, et al. Active microbial taxa preferentially assimilate inorganic nitrogen in acidic upland soils using a 15N-DNA-SIP approach [J]. Soil Biology and Biochemistry, 2024, 188: 109226.
[35] WANG H H, WANG J, GE C, et al. Fungi dominated the incorporation of 13C-CO2 into microbial biomass in tomato rhizosphere soil under different CO2 concentrations [J]. Microorganisms,2021,9(10): 16.
[36] PRUDENCE S M, NEWITT J T, WORSLEY S F, et al. Soil, senescence and exudate utilisation: characterisation of the?Paragon var. spring bread wheat root microbiome [J]. Environmental Microbiome, 2021, 16(1): 12.
[37] LI D, ZHANG J, GRUDA N S, et al. The regulation of gross nitrogen transformation rates in greenhouse soil cultivated with cucumber plants under elevated atmospheric [CO2] and increased soil temperature [J]. Geoderma, 2023, 439: 116680.
[38] MAU R L, LIU C M, AZIZ M, et al. Linking soil bacterial biodiversity and soil carbon stability [J]. The ISME Journal, 2015, 9(6): 1477-1480.
[39] BARNETT S E, YOUNGBLUT N D, BUCKLEY D H. Bacterial community dynamics explain carbon mineralization and assimilation in soils of different land-use history [J]. Environmental Microbiology, 2022, 24(11): 5230-5247.
[40] PENGFA L, JIA L, MUHAMMAD S, et al. Reduced chemodiversity suppresses rhizosphere microbiome functioning in the mono-cropped agroecosystems [J]. Microbiome, 2022, 10(1): 108.
[41] HU L F, TAN X Y, LU L L, et al. DNA-SIP delineates unique microbial communities in the rhizosphere of the hyperaccumulator Sedum alfredii which are beneficial to Cd phytoextraction [J]. Ecotoxicology and Environmental Safety, 2024, 272: 116016.
[42] ZHANG M, LI Z, H?GGBLOM M M, et al. Characterization of nitrate-dependent as(iii)-oxidizing communities in arsenic-contaminated soil and investigation of their metabolic potentials by the combination of DNA-stable isotope probing and metagenomics [J]. Environmental Science and Technology, 2020, 54(12): 7366-7377.
[43] ZHANG X, LI J B, ZHANG D Y, et al. Unveiling the novel role of ryegrass rhizospheric metabolites in benzo[a]pyrene biodegradation [J]. Environment International, 2023, 180: 108215.
[44] XU Y F, TENG Y, WANG X M, et al. Endogenous biohydrogen from a rhizobium-legume association drives microbial biodegradation of polychlorinated biphenyl in contaminated soil [J]. Environment International, 2023, 176: 107962.
[45] JIANG L F, ZHANG D Y, SONG M K, et al. The positive role of root decomposition on the bioremediation of organic pollutants contaminated soil: a case study using PCB-9 as a model compound [J]. Soil Biology and Biochemistry, 2022, 171: 108726.
[46] LEMMEL F, MAUNOURY-DANGER F, LEYVAL C, et al. DNA stable isotope probing reveals contrasted activity and phenanthrene-degrading bacteria identity in a gradient of anthropized soils [J]. FEMS Microbiol Ecol, 2019, 95(12): fiz181.
[47] LIAN L N, XING Y, ZHANG D Y, et al. Comparative analysis of DNA-SIP and magnetic-nanoparticle mediated isolation (MMI) on unraveling dimethoate degraders [J]. Frontiers of Environmental Science & Engineering, 2023, 18(1): 5.
[48] CUPPLES A M. Contaminant-degrading microor-ganisms identified using stable isotope probing [J]. Chemical Engineering & Technology, 2016, 39(9): 1593-1603.
[49] JIANG B, JIN N F, XING Y, et al. Unraveling uncultivable pesticide degraders via stable isotope probing (SIP) [J]. Critical Reviews in Biotechnology, 2018, 38(7): 1-24.
[50] WANG Y, HUANG W E, CUI L, et al. Single cell stable isotope probing in microbiology using Raman microspectroscopy [J]. Current Opinion in Biotechnology, 2016, 41: 34-42.
[51] WEBER F, ZALIZNYAK T, EDGCOMB V P, et al. Using stable isotope probing and raman microspectroscopy to measure growth rates of heterotrophic bacteria [J]. Applied and Environmental Microbiology,2021,87(22): 0146021.
[52] 辛雨菡,崔丽. 单细胞稳定同位素标记技术在固氮微生物中的应用研究 [J]. 微生物学报, 2020, 60(9): 1772-1783.
[53] NEUFELD J D, DUMONT M G, VOHRA J, et al. Methodological Considerations for the use of stable isotope probing in microbial ecology [J]. Microbial Ecology, 2006, 53(3): 435-442.
[54] 贾仲君. 稳定性同位素核酸探针技术DNA-SIP原理与应用 [J]. 微生物学报, 2011, 51(12):1585-1594.
[55] COYOTZI S, PRATSCHER J, MURRELL J C, et al. Targeted metagenomics of active microbial populations with stable-isotope probing [J]. Current Opinion in Biotechnology, 2016, 41: 1-8.