[1] WANG K, LI Z R, WANG X. Concatenated network fusion algorithm (CNFA) based on deep learning: improving the detection accuracy of surface defects for ceramic tile[J]. Applied Sciences, 2022, 12(3): 1249.
[2] CAO T L, SONG K C, XU L K, et al. Balanced multi-scale target score network for ceramic tile surface defect detection[J]. Measurement, 2024, 224: 113914.
[3] KUMAR A, ZHANG Z J, LYU H B. Object detection in real time based on improved single shot multi-box detector algorithm[J]. EURASIP Journal on Wireless Communications and Networking, 2020, 2020: 204.
[4] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2016: 779-788.
[5] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[6] CAI Z W, VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1483-1498.
[7] ZOU Z X, CHEN K Y, SHI Z W, et al. Object detection in 20 years: a survey[J]. Proceedings of the IEEE, 2023, 111(3): 257-276.
[8] 苏佳,贾泽,秦一畅,等. 面向工业表面缺陷检测的改进YOLOv8算法[J]. 计算机工程与应用,2024,60(14):187-196.
[9] 赵楚,段先华,苏俊楷. 改进Faster RCNN的瓷砖表面瑕疵检测研究[J]. 计算机工程与应用,2023,59(14):201-208.
[10] YU X L, YU Q C, MU Q Y, et al. MCAW-YOLO: an efficient detection model for ceramic tile surface defects[J]. Applied Sciences, 2023, 13(21): 12057. 
[11] 余松森,薛国鹏,何皇,等.改进YOLOv8的轻量级瓷砖表面缺陷检测[J].计算机工程与应用,2024,60(18):88-102. 
[12] LIU X Y, PENG H W, ZHENG N X, et al. EfficientViT: memory efficient vision transformer with cascaded group attention[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2023: 14420-14430.
[13] HUI Y, YOU S J, HU X H, et al. SEB-YOLO: an improved YOLOv5 model for remote sensing small target detection[J]. Sensors, 2024, 24(7):2193.
[14] LI J F, WEN Y, HE L H. SCConv: spatial and channel reconstruction convolution for feature redundancy[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2023: 6153-6162.
[15] WU M J, YUN L J, WANG Y B, et al. Detection algorithm for dense small objects in high altitude image[J]. Digital Signal Processing, 2024, 146: 104390.
[16] GUPTA C, GILL N S, GULIA P, et al. A novel finetuned YOLOv6 transfer learning model for real-time object detection[J]. Journal of Real-Time Image Processing, 2023, 20(3): 42.
[17] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2023: 7464-7475.
[18] ZHAO Y, Lü W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2024: 16965-16974.