|本期目录/Table of Contents|

[1]巨修练,李科,王黎丽.蜜蜂与桃蚜烟碱乙酰胆碱受体同源模建与对接[J].武汉工程大学学报,2013,(08):13-18.[doi:103969/jissn16742869201308003]
 JU Xiu lian,LI Ke,WANG Li li.Homology modeling of honeybee and peachpotato aphid nAChRs and surflexdocking[J].Journal of Wuhan Institute of Technology,2013,(08):13-18.[doi:103969/jissn16742869201308003]
点击复制

蜜蜂与桃蚜烟碱乙酰胆碱受体同源模建与对接(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2013年08期
页码:
13-18
栏目:
化学与化学工程
出版日期:
2013-08-31

文章信息/Info

Title:
Homology modeling of honeybee and peachpotato aphid nAChRs and surflexdocking
文章编号:
16742869(2013)08001306
作者:
巨修练李科王黎丽
武汉工程大学化工与制药学院,绿色化工过程省部教育部重点实验室,湖北 武汉 430074
Author(s):
JU Xiulian LI Ke WANG Lili
Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430074, China
关键词:
烟碱乙酰胆碱受体蜜蜂桃蚜吡虫啉同源模建
Keywords:
nACh receptor honeybee peachpotato aphid imidacloprid homology modeling
分类号:
R914.2
DOI:
103969/jissn16742869201308003
文献标志码:
A
摘要:
为了探究使用吡虫啉对蜜蜂造成伤害的成因,以“静水椎实螺”的烟碱乙酰结合蛋白与吡虫啉的共晶化合物作为模板,使用分子模拟技术得到蜜蜂和桃蚜烟碱乙酰胆碱受体.通过拉氏图和分子动力学模拟等实验方法验证了受体的可靠性和合理性.将新烟碱类化合物吡虫啉分别与模建受体对接,所得到的结合自由能和对接位点与生物学实验数据和位点突变结果相吻合.吡虫啉分别与蜜蜂、桃蚜烟碱乙酰胆碱受体分子对接结果显示,吡虫啉与蜜蜂、桃蚜烟碱乙酰胆碱受体对接的结合自由能最高值分别为-9.592 4千卡/摩尔和-7.124 1千卡/摩尔,说明该药物对蜜蜂、桃蚜具有同等效力的毒性.吡虫啉的硝基部分在对接中起到了关键作用,在蜜蜂受体中其与阿尔法亚基发生相互作用,而在桃蚜受体中主要与贝塔亚基结合.证明了吡虫啉的使用确实危害到了蜜蜂群体的生存.
Abstract:
To explore how Imidacloprid affect honeybee, threedimensional models of honeybee (Apis mellifera) α1/β1 and peachpotato aphid (Myzus persicae) α2/β1 nAChRs were constructed using homology modeling method of SYBYL X1.2, crystal structure of the acetylcholinebinding protein of Lymnaea stagnalis were used as the template. The quality of the models was confirmed by molecular dynamics. Furthermore, nAChR agonist insecticide Imidacloprid (IMI) was docked into the putative binding site of the honeybee (Apis mellifera) α1/β1 and peachpotato aphid (Myzus persicae) α2/β1 nAChRs by Surflexdocking, respectively. The binding free energy of docking results are in agreement with the experimental data and the binding sites were consistent with the results from the labeling and mutagenesis experiments. The binding results of IMI binding with honeybee (Apis mellifera) and peachpotato aphid (Myzus persicae) nAChRs show that the binding free energy of IMI docking with honeybee and peachpotato aphid nAChRs are -9.592 4 kcal/mol and -7.124 1 kcal/mol, respectively, which demonstrates that IMI has the samelevel toxicity to honeybee versus peachpotato aphid. Nitro moiety of IMI interacts with α subunit from honeybee nAChR and bind to residues from β subunit from peachpotato aphid nAChR, which plays a key role in the binding interaction. The experiment data prove that using IMI causes harm to the honeybee colony.

参考文献/References:

[1]李阳,黄翔,陈达,等. 5芳基3羟基异恶唑的合成\[J\]. 武汉工程大学学报,2011(5): 1821.LI Yang, HUANG Xiang, CHEN Da, et al. Synthesis of 5arylsubstituted3hydroxyisoxazoles\[J\]. Journal of Wuhan Institute of Technology, 2011(5): 1821.(in Chinese)[2]SUCHAIL S, GUEZ D, BELZUNCES L P. Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera\[J\]. Environmental Toxicology and Chemistry, 2001, 20(11): 24822486.[3]OLDROYD B P.What’s killing American honey bees?\[J\]. PLOS Biol, 2007 (5): 11951199.[4]FAUCON J P, AURI?RES C, DRAJNUDEL P, et al. Experimental study on the toxicity of imidacloprid given in syrup to honey bee (Apis mellifera) colonies\[J\]. Pest Management Science, 2005, 61(2): 111125.[5]NAUEN R, EBBINGHAUSKINTSCHER U, SCHMUCK R. Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae)\[J\]. Pest Managment Science, 2001, 57(7):577586.[6]VANENGELSDORP D, EVANS J D, SAEGERMAN C, et al. Colony collapse disorder: a descriptive study\[J\]. Plos One, 2009, 4(8): 117.[7]UNWIN N. Refined structure of the nicotinic acetylcholine receptor at 4 resolution\[J\]. Journal of Molecular Biology, 2005, 346(4): 967989.[8]UNWIN N, MIYAZAWA A, LI J, et al. Activation of the nicotinic acetylcholine receptor involves a Switch in conformation of the alpha subunits\[J\]. Journal of Molecular Biology, 2002, 319(5): 11651176.[9]TOMIZAWA M, LEE D L, CASIDA J E. Neonicotinoid insecticides: molecular features conferring selectivity for insect versus mammalian nicotinic receptors\[J\]. Journal of Agricultural and Food Chemistry, 2000, 48(12): 60166024. [10]SATTELLE D B. Invertebrate nicotinic acetylcholine receptorstargets for chemicals and drugs important in agriculture, veterinary medicine and human health\[J\]. Journal of Pesticide Science, 2009, 34(4): 233240.[11]CORRINGER P J, LE NOVRE N, CHANGEUX J P. Nicotinic receptors at the amino acid level\[J\]. Annual Review of Pharmacology and Toxicology, 2000, 40:431458.[12]TOMIZAWA M, CASIDA J E. Imidacloprid, thiacloprid, and their imine derivatives UpRegulate the α4β2 nicotinic acetylcholine receptor in M10 cells\[J\]. Toxicology and Applied Pharmacology, 2000, 169(1): 114120.[13]TOMIZAWA M, CASIDA J E. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors\[J\]. Annual Review of Entomology, 2003, 48: 339364.[14]TOMIZAWA M, CASIDA J E. Neonicotinoid insecticide toxicology: mechanisms of selective action\[J\]. Annual Review of Pharmacology and Toxicology, 2005, 45:247268.[15]BISSON W H, WESTERA G, SCHUBIGER P A, et al. Homology modeling and dynamics of the extracellular domain of rat and human neuronal nicotinic acetylcholine receptor subtypes alpha4beta2 and alpha7\[J\]. Journal of Molecular Modeling, 2008, 14(10): 891899.[16]SHIMOMURA M, YOKOTA M, MATSUDA K, et al. Roles of loop C and the loop BC interval of the nicotinic receptor alpha subunit in its selective interactions with imidacloprid in insects\[J\]. Neuroscience Letters, 2004, 363(3): 195198.[17]SHIMOMURA M, YOKOTA M, IHARA M, et al. Role in the selectivity of neonicotinoids of insectspecific basic residues in loop D of the nicotinic acetylcholine receptor agonist binding site\[J\]. Molecular Pharmacology, 2006, 70(4): 12551263.[18]SHIMOMURA M, SATOH H, YOKOTA M, et al. Insectvertebrate chimeric nicotinic acetylcholine receptors identify a region, loop B to the Nterminus of the Drosophila Dalpha2 subunit, which contributes to neonicotinoid sensitivity\[J\]. Neuroscience Letters, 2005, 385(2): 168172.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:20130315基金项目:武汉工程大学创新基金(cx201103)作者简介:巨修炼(1959),男,陕西乾县人,教授,博士,博士研究生导师.研究方向:计算机药物辅助设计、新农药研发、生物活性测试.
更新日期/Last Update: 2013-09-07