|本期目录/Table of Contents|

[1]熊礼威,崔晓慧,汪建华,等.单晶硅表面磁控溅射铜栅极[J].武汉工程大学学报,2014,(01):52-56.[doi:10. 3969/j. issn. 1674-2869. 2014. 01. 011]
 XIONG Li-wei,CUI Xiao-hui,WANG Jian-hua,et al.Copper grid on monocrystalline silicon deposited by magnetron sputtering[J].Journal of Wuhan Institute of Technology,2014,(01):52-56.[doi:10. 3969/j. issn. 1674-2869. 2014. 01. 011]
点击复制

单晶硅表面磁控溅射铜栅极(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2014年01期
页码:
52-56
栏目:
材料科学与工程
出版日期:
2014-01-31

文章信息/Info

Title:
Copper grid on monocrystalline silicon deposited by magnetron sputtering
文章编号:
1674-2869(2014)01-0052-05
作者:
熊礼威12崔晓慧12汪建华12翁 俊12龚国华12张 林3
1. 武汉工程大学材料科学与工程学院,湖北 武汉 430074;2. 湖北省等离子体化学与新材料重点实验室(武汉工程大学),湖北 武汉 430074;2. 广东生之源数码电子股份有限公司,广东 佛山 528234
Author(s):
XIONG Li-wei12 CUI Xiao-hui12 WANG Jian-hua12 WENG Jun12 GONG Guo-hua12 ZHANG Lin3
1. School of Material Science and Engineering,Wuhan Institute of Technology, Wuhan 430074, China;2. Hubei Provincial Key Laboratory of Plasma Chemistry & Advanced Materials(Wuhan Institute of Technology),Wuhan 430074, China;2. Guangdong Health Digital Electronics Co. , Ltd. , Foshan 528234,China
关键词:
单晶硅太阳能电池铜栅极附着力
Keywords:
mono-crystalline silicon solar cells copper grid adhesion
分类号:
TQ175.1
DOI:
10. 3969/j. issn. 1674-2869. 2014. 01. 011
文献标志码:
A
摘要:
晶硅太阳能电池表面的导电栅极主要用于输出电能,若其与基体间的附着力较差,将会极大地降低电池元件的稳定性和使用寿命,而与其他制备方法相比,物理气相沉积法具有可控性好、成本低等优势. 为了继承物理气相沉积法的相关优势,同时能够使铜栅极与基片之间具有良好的附着力,利用磁控溅射法在单晶硅上进行铜栅极的制备实验,研究了磁控溅射过程中溅射功率和工作气压等参数对最终制得的铜栅极附着力的影响. 采用超声震荡加强实验检测铜栅极的附着力,使用金相显微镜观察铜栅极的整体形貌及断线率,通过扫描电子显微镜观察铜膜的表面形貌. 结果表明在溅射功率为180 W,工作气压为0.8 Pa的条件下制备的铜栅极线宽更为均匀,且进行加强实验后断线率为0.
Abstract:
The conductive gate on the surface of crystalline silicon solar cell is mainly used for outputting current energy and it will reduce the stability and service life of the battery element in a great degree if it shows poor adhesion between the matrix and the gate. Physical vapor deposition method has advantages of good controllability and low cost. To obtain good adhesion between the copper grid and the substrate on the basis of inheriting advantages of physical vapor deposition, we used magnetron sputtering method to prepare copper grid on single crystal silicon. Influences of work pressure and sputtering power on the adhesion between deposited gates with substrate were discussed by designing process parameters. The detection of overall morphology, disconnection rate and surface morphology were respectively carried out by metallographic microscope and scanning electron microscopy. The enhanced assay was used to predicate the adhesion of the copper grid through ultrasonic vibration. Experimental results show that the width of the deposited copper gate is more uniform and the disconnection rate reaches 0 when sputtering power is 180 W and high working pressure is 0.8 Pa.

参考文献/References:

[1] 刘跃飞. 单晶硅、多晶硅太阳电池电性能一致性分析[J]. 青海科技,2004(4):15-16. LIU Yue?fei. Performance consistency analysis of monocrystalline silicon and polycrystalline silicon solar cell[J]. Qinghai Science and Technology, 2004(4): 15-16. (in Chinese)[2] Sen S K. How modeling can attract experimentalists to improve solar cell’s efficiency: Divide?and?conquer approach[J]. Nonlinear Analysis,2009,71:196-211. [3] Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables(Version 38)[J]. Progress in Photovoltaics: Research and Applications,2011,19(5):565-572. [4] 李怀辉,王小平, 王力军, 等. 硅半导体太阳能电池进展[J]. 材料导报, 2011,25(10):49-53. LI Huai-hui,WANG Xiao-ping, WANG Li-jun, et al. Progress of silicon solar cell[J]. Materials Review,2011,25(10):49-53. (in Chinese)[5] 谭富彬,赵玲,陈亮维,等. 单晶硅太阳能电池硅与电极间的欧姆接触[J]. 贵金属,2001,22(1):12-16. TAN Fu?bin, ZHAO Ling, CHEN Liang?wei, et al. Ohmic contact between monocrystalline silicon and electrode in solar cell[J]. Precious Metals, 2001,22(1):12-16. (in Chinese)[6] 张世强,李万河,徐品烈. 硅太阳能电池的丝网印刷技术[J]. 电子工业专用设备,2007,148:55-59. ZHANG Shi?qiang, LI Wan?he, XU Pin?lie. Silk screen printing technology of silicon solar cell[J]. Equipment for Electronic Products Manufacturing,2007,148:55-59. (in Chinese)[7] Menezes S, Anhderson D P. Wavelength-property correlation in electrodeposited ultrastructrured Cu-Ni Multilayers[J]. Journal of the Electrochemical Society,1990,167(2):440-445. [8] 王庆伟. 工业晶体硅太阳能电池栅线优化研究[D]. 北京:北京交通大学,2012. WANG Qing-wei. The study of optimization of finger on industrial crystalline silicon solar cells[D]. Beijing:Beijing Jiaotong University,2012. (in Chinese)[9] 欧萌,靳志强. 太阳能电池埋栅电极制造新技术[J]. 电子工业专用设备,2010,183:4-6. OU Meng,JIN Zhi?qiang. The new technology of making PV?salor buried contact eelectrode[J]. Equipment for Electronic Products Manufacturing,2010,183:4-6. (in Chinese)[10] 徐慢. 玻璃基太阳能电池薄膜材料制备及其结构和性能研究[D]. 武汉:武汉理工大学,2006. XU Man. Study on preparation, microstructure and properties of thin film for solar cell on glass substrate[D]. Wuhan:Wuhan University of Technology,2006. (in Chinese)[11] Kuang-Chieh Lai,Chien-Chih Liu,Chun-hsiung Lu, et al. Characterization of ZnO:Ga transparent contact electrodes for microcrystalline silicon thin film solar cells[J]. Solar Energy Materials and Solar Cells, 2010,94(3):397-401. [12] 施小忠,汪乐,夏冠群. 太阳电池栅线的设计[J]. 电子学报, 1999, 11(27): 126. SHI Xiao?zhong, WANG Le, XIA Guan?qun. The gride Line’s design of solar cell[J]. Acta Electronica Sinica,1999,11(27):126. (in Chinese)[13] Hahn G, Geiger P. Record efficiencies for EFG and string ribbon solar cells[J]. Electrical & Electronics Engineering,2003, 11(5): 341-346. [14] 王新建. 溅射铜和铜合金薄膜的微观结构与性能[D]. 上海:上海交通大学,2009. WANG Xin?jian. Microstructure and properties of sputtered copper and copper alloy thin films[D]. Shanghai:Shanghai Jiaotong University,2009. (in Chinese)[15] 董西英,马刚领. 磁控溅射淀积速率影响因素及最佳工艺参数研究[J]. 无线互联科技,2010(4):36-38. DONG Xi?ying,MA Gang?ling. Research on influence factor and optimum process of magnetron sputtering deposition rate[J]. Wu Xian Hu Lian Ke Ji,2010(4):36-38. (in Chinese)[16] 杨江. 采用磁控溅射法在钢材表面镀钛研究[D]. 成都:西华大学,2012. YANG Jiang. The research of titanium film deposited on steel surface by magnetron sputtering[D]. Chengdu: Xihua University,2012. (in Chinese)

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2013-11-15基金项目:国家自然科学基金项目(11175137);湖北省教育厅科学技术研究项目(Q20121501);武汉工程大学科学研究基金(11111051)作者简介:熊礼威(1983-),男,湖北仙桃人,博士,硕士研究生导师. 研究方向:低温等离子体技术及新型功能材料制备.
更新日期/Last Update: 2014-02-24