|本期目录/Table of Contents|

[1]李 亮,庹 鑫,李思博,等.无酶过氧化氢电化学传感器材料的研究进展[J].武汉工程大学学报,2016,38(4):343-359.[doi:10. 3969/j. issn. 1674?2869. 2016. 04. 007]
 LI Liang,TUO Xin,LI Sibo,et al.Development of Materials for Non-Enzymatic Hydrogen Peroxide Electrochemical Sensors[J].Journal of Wuhan Institute of Technology,2016,38(4):343-359.[doi:10. 3969/j. issn. 1674?2869. 2016. 04. 007]
点击复制

无酶过氧化氢电化学传感器材料的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
38
期数:
2016年4期
页码:
343-359
栏目:
材料科学与工程
出版日期:
2016-08-28

文章信息/Info

Title:
Development of Materials for Non-Enzymatic Hydrogen Peroxide Electrochemical Sensors
作者:
李 亮庹 鑫李思博佘 潇
武汉工程大学材料科学与工程学院,湖北 武汉 430074
Author(s):
LI Liang TUO Xin LI Sibo SHE Xiao
School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430074, China
关键词:
过氧化氢无酶电化学传感器纳米材料
Keywords:
hydrogen peroxide non-enzymatic electrochemical sensor nanomaterials
分类号:
O657.1
DOI:
10. 3969/j. issn. 1674?2869. 2016. 04. 007
文献标志码:
A
摘要:
综述了当前无酶过氧化氢电化学传感器的研究进展,重点介绍了各种无酶过氧化氢电化学传感器所使用的电极材料,主要包括:铂、银等贵金属纳米材料;铜、锰、钴及其氧化物等过渡金属纳米材料;各类合金基纳米材料;碳纳米管、石墨烯、氧化石墨烯等碳基纳米材料. 分析了各类材料所构建的无酶过氧化氢电化学传感器检测性能,如测试电位、灵敏度、检测限、选择性等,总结了近5年来各类新型材料在此类传感器上的应用和各自特点,分析了各类传感器的检测原理,对这类传感器的进一步发展提出了相应的建议,指出发展具有更大比表面积、形貌特殊的纳米及其复合材料是提高检测性能的重要方向,同时,也对无酶过氧化氢传感器在商业化上应用可能性进行了展望.
Abstract:
Different kinds of electrode materials for the non-enzymatic hydrogen peroxide electrochemical sensors were focused, mainly including nobel metal nanomaterials (Pt and Ag), transition metal and its oxide nanomaterials (Cu, Mn and Co), alloy-based nanomaterials, carbon nanotubes, grapheme and graphene oxide-based nanomaterials. The performances (such as test potential, sensibility, linear range, selectivity) of the non-enzymatic hydrogen peroxide electrochemical sensors were analyzed. The applications of the above electrode materials in non-enzymatic hydrogen peroxide electrochemical sensors in recent five years were discussed and their characteristics were included. The detection principles of the various sensors were analyzed and some suggestions for the further development of non-enzymatic hydrogen peroxide electrochemical sensors were given. It indicated that the nanomaterials with larger surface area and special?morphologies are the key for improving the detection performance of the non-enzymatic hydrogen peroxide electrochemical sensors. Meanwhile, the possible commercial application of non-enzymatic hydrogen peroxide electrochemical sensors was forecasted.

参考文献/References:

[1] ALBERS R E, NYSTROM M, SIVERSTROM M, et al. Development of a monolith-based process for H2O2 production: from idea to large scale implementation[J]. Catalysis today, 2001, 69:247-252. [2] SOHRABNEZHAN S, POORAHMAD A, SALAVATIYAN T. CuO-MMT nanocomposite: effective photocatalyst for the discoloration of methylene blue in the absence of H2O2[J]. Applied physics A, 2016, 122:1-12. [3] SENTHAMIZHAN A, BALUSAMY B, AYTAC Z, et al. Ultrasensitive electrospun fluorescent nanofibrous membrane for rapid visual colorimetric detection of H2O2[J]. Analytical and bioanalytical chemistry, 2016, 408:1-9. [4] SEGAWA S ,OKARMU K. The use of hydrogen peroxide in clinical chemistry:application of H2O2, POD as an oxidizing reagent in modified method of Kind-King for serum[J]. Rinsho byori the Japanese journal of clinical pathology, 1978, 26:365-368. [5] TAN F, CHEN H, WU D, et al. Optimization of removal of 2-methylisoborneol from drinking water using UV/H2O2[J]. Journal of advanced oxidation technologies, 2016, 19:98-104. [6] BROWN D S, JENKE D R. Determination of sulphite and hydrogen peroxide in pharmaceutical matrices via classical spectrophotometry and flow injection[J]. Analyst, 1987, 112:899-902. [7] SANTIMONE M. Titration study of guaiacol oxidation by horseradish peroxidase[J]. Canadian journal of biochemistry, 1975, 53:649-657. [8] WANG P, WANG K, GU Y. A highly selective fluorescent turn-on NIR probe for the bioimaging of hydrogen peroxide in vitro and in vivo[J]. Sensors & actuators bchemical, 2016, 228:174-179. [9] CHEN Z, YUET, XU K, et al. Stimulus-response mesoporous silica nanoparticle-based chemiluminescence biosensor for cocaine determination[J]. Biosensors & bioelectronics, 2016, 75:8-14. [10] ZHANG R, CHEN W. Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors[J]. Biosensors & bioelectronics, 2016, 80:611-616. [11] WANG F, LIU X,LU C H. Cysteine-mediated aggregation of Au nanoparticles: the development of a H2O2 sensor and oxidase-based biosensors[J]. ?ACS nano, 2013, 220:7278-7286. [12] KANYON G P, RAWLINSON S, DAVIS J. A non-enzymatic sensor based on the redox of ferrocene carboxylic acid on ionic liquid film-modified screen-printed graphite electrode for the analysis of hydrogen peroxide residues in milk[J]. Journal of electroanalytical chemistry, 2016, 766:147-151. [13] TATSUMA T, OKAWA Y,WATANABE T. Enzyme monolayer-and bilayer-modified tin oxide electrodes for the determination of hydrogen peroxide and glucose[J]. ?Analytical chemistry,?2002, 61:2352-2355. [14] TANG N, ZHENG J, SHENG Q, et al. A novel H2O2 sensor based on the enzymatically induced deposition of polyaniline at a horseradish peroxide/aligned single-wall carbon nanotubes modified Au electrode[J]. Analyst, 2011, 136:781-786. [15] LEI C, DENG J. Hydrogen peroxide sensor based on coimmobilized methylene green and horseradish peroxidase in the same montmorillonite-modified bovine serum albumin-glutaraldehyde matrix on a glassy carbon electrode surface[J]. Analytical chemistry, 1996, 68:3344-3349. [16] NGUYEN T T, NUYEN V H, DAVID R K, et al. Facile synthesis of cobalt oxide/reduced graphene oxide composites for electrochemical capacitor and sensor applications[J]. Solid state sciences, 2016, 53:71-77. [17] KIVRAK H, ALALO, ATBAS D. Efficient rapid microwave-assisted route to synthesize Pt–MnOx hydrogen peroxide sensor[J]. Electrochimica acta, 2015, 176:497-503. [18] HSU C C, LO Y R, LIN Y C, et al. A spectrometric method for hydrogen peroxide concentration measurement with a reusable and cost-efficient sensor[J]. Sensors, 2014, 15:25716-25729. [19] WAN J, WANG W, YIN G, et al. Nonenzymatic H2O2 sensor based on Pt nanoflower electrode[J]. Journal of cluster science, 2012, 23:1061-1068. [20] HSIAO W H, CHEN H Y, CHENG T M, et al. Urchin-like Ag nanowires as non-enzymatic hydrogen peroxide sensor[J]. Journal of the Chinese chemical society, 2012, 59:500-506. [21] MUKOUYAMA Y, NAKANISHI S, CHIBA T, et al. Mechanisms of two electrochemical oscillations of different types, observed for H2O2 reduction on a Pt electrode in the presence of a small amount of halide ions[J]. Journal of physical chemistry B, 2010, 105:7246-7253. [22] YOU J M, KIM D, JEON S. Electrocatalytic reduction of H2O2 by Pt nanoparticles covalently bonded to thiolated carbon nanostructures[J]. Electrochimica acta, 2012, 65:288-293. [23] BHUJUN B, ANANDAN S, TAN M T. Study of ternary metal oxides as supercapacitor electrodes[J]. Wit transactions on ecology & the environment, 2014, 186:386-342. [24] RAMZAN M, LEBEGUE S, AHUJA R. Transition metal doped MgH2: a material to potentially combine fuel-cell and battery technologies[J]. International journal of hydrogen energy, 2010, 35:10373-10376. [25] SCHIMID T J, GASTEIGER H A, STAEB G D, et al. Characterization of high-surface-area electrocatalysts using a rotating disk electrode configuration[J]. Journal of the electrochemical society, 1998, 145:2354- 2358. [26] NERLE U. Thermal oxidation of copper for favorable formation of cupric oxide (CuO) semiconductor[J]. Iosr journal of applied physics, 2013, 5:1-7. [27] GUO Y. Urchin-like Pd@CuO-Pd yolk-shell nanostructures: synthesis, characterization and electrocatalysis[J]. Journal of materials chemistry A, 2015, 3:13653-13661. [28] SIDDIQUI H, QURESHI M S, HQQUE F Z. Valuation of copper oxide (CuO) nanoflakes for its suitability as an absorbing material in solar cells fabrication[J]. International journal for light and electron optics, 2016, 77:305-314. [29] ASANO K, MATSUBARA S. Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection[J]. Talanta, 2010, 80:1648-1652. [30] WANG P, NG Y H, AMAL R. Embedment of anodized p-type CuO thin films with CuO nanowires for improvement in photoelectrochemical stability[J]. Nanoscale, 2013, 5:2952-2958. [31] WANG F, KALAM A, CHANG L, et al. Rapid microwave assisted synthesis of ball-in-ball CuO microspheres and its application as a H2O2 sensor[J]. Materials Letters, 2013, 92:96-99. [32] ZHANG P, GUO D, LI Q. Manganese oxide ultrathin nanosheets sensors for non-enzymatic detection of H2O2[J]. Materials letters, 2014, 125:202-205. [33] SCAVETTA E, BALLARIN B, TONELLI D. A cheap amperometric and optical sensor for glucose determination[J]. Electroanalysis, 2010, 22:427-432. [34] QING X X, YU K, WANG X F, et al. Synthesis and characterization of Co3O4 nanoflowers for lithium ion batteries[J]. Advanced materials research, 2013, 849:147-150. [35] KIM M. Introduction of Co3O4 into activated honeycomb-like carbon for the fabrication of high performance electrode materials for supercapacitors[J]. Physical chemistry chemical physics, 2016, 18:9124-9132. [36] XUE X Y, YUAN S, XIANG L L, et al. Porous Co3O4 nanoneedle arrays growing directly on copper foils and their ultrafast charging/discharging as lithium-ion battery anodes[J]. Chemical communications, 2011, 47:4718-4720. [37] WANG M, JIANG X, LIU J, et al. Highly sensitive H2O2 sensor based on Co3O4 hollow sphere prepared via a template free method[J]. Electrochimica acta, 2015, 182:613-620. [38] INOUE H, HAZE A, CHIKU M, et al. Ethanol oxidation reaction on tandem-type Pt/Rh/SnOx electrocatalysts[J]. Proceedings of the national academy of sciences of the United States of America, 1986, 83:7731-7735. [39] TSUKAMOTO D, SHIRO A, SHIRRAI Y, et al. Photocatalytic H2O2 Production from ethanol/O2 system using TiO2 loaded with Au-Ag bimetallic alloy nanoparticles[J]. Acs catalysis, 2012, 2:599-603. [40] SONG H, NI Y, KOKOT S. A novel electrochemical sensor based on the copper-doped copper oxide nano-particles for the analysis of hydrogen peroxide[J]. Colloids & surfaces a physicochemical & engineering aspects, 2015, 465:153-158. [41] KHAN S B, RAHMAN M M, ASIRI A M, et al. Fabrication of non-enzymatic sensor using Co doped ZnO nanoparticles as a marker of H2O2[J]. Physica E: low-dimensional systems and nanostructures, 2014, 62:21-27. [42] BAITHA P K, PAL P P, MANAM J. Dosimetric sensing and optical properties of ZnO-SnO2 nanocomposites synthesized by co-precipitation method[J]. Nuclear instruments & methods in physics research, 2014, 74:91-98. [43] ZHANG G, PAN X, WANG L. Doped TiO2 and TiO2 nanotubes: synthesis and applications[J]. International journal of impact engineering, 2013, 7:77-86. [44] JANYASUPAB M, LIUC W, ZHANG Y, et al. Bimetallic Pt-M (M=Cu, Ni, Pd, and Rh) nanoporous for H2O2 based amperometric biosensors[J]. Sensors & actuators b chemical, 2013, 179:209-214. [45] YANG Z, ZHANG L, ZHANGY, et al. Rational design of CuO@Cu nanostructure with tuneable morphology and electrochemical properties[J]. Rsc advances, 2014, 4:8121-8124. [46] AN X, TENG F, ZHANG P, et al. Enhanced photo electrochemical sensor based on ZnO-SnO2 composite nanotubes[J]. Journal of alloys & compounds, 2014, 614:373-378. [47] BAUGHMAN R H, ZAKHIiDOVA A, HEERW A D. Carbon nanotubes-the route toward applications[J]. Science, 2002, 297:787-792. [48] QIANG X L, WANG Z H, XIA J F, et al. In situ growth of copper nanoparticles on carbon nanotubes and its application for electrocatalysis of hydrogen peroxide[J]. Journal of analysis laboratory, 2012, 31:13-18. [49] LIN Y, CHEN X, LIN Y, et al. Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite made from carbon nanotubes and molybdenum disulfide[J]. Microchimica acta, 2015, 182:1803-1809. [50] GEIM A K. Random walk to graphene[J]. Angewandte chemie international edition, 2011, 50:6966- 6985. [51] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature materials, 2007, 6:183-191. [52] WANG M Y, SHEN T, WANG M, et al. One-pot synthesis of alpha-Fe2O3 nanoparticles-decorated reduced graphene oxide for efficient nonenzymatic H2O2 biosensor[J]. Sensors & actuators b chemical, 2014, 190:645-650. [53] DEVASENATHIPATHY R, KOHILARENI K, CHENB S M, et al. Electrochemical preparation of biomolecule stabilized copper nanoparticles decorated reduced graphene oxide for the sensitive and selective determination of hydrogen peroxide[J]. Electrochimica acta, 2016, 191:55-61. [54] CINTI S, ARDUINI F, VELLUCCI G, et al. Carbon black assisted tailoring of prussian blue nanoparticles to tune sensitivity and detection limit towards H2O2 by using screen printed electrode[J]. Electrochimica acta,2014,47:63-66. [55] YOO E, NAKAMURA J, ZHOU H S. N-doped graphene nanosheets for li-air fuel cells under acidic conditions[J]. Energy & environmental science, 2012,5:6928- 6932. [56] ZHANG X P, LIU D, YU B, et al. A novel nonenzymatic hydrogen peroxide sensor based on electrospun nitrogen-doped carbon nanoparticles-embedded carbon nanofibers film[J]. Sensors & actuators b chemical, 2016, 224:103-109. [57] REICHA F M, SOLIMAN M A, SHABAN A M, et al. Conducting polymers[J]. Journal of materials science, 1990, 26(4):1051-1055. [58] YANG M, KIM D S, YOON J H,?et al. Nanopillar films with polyoxometalate doped polyaniline for electrochemical detection of hydrogen peroxide[J]. Analyst, 2016, 141(4):1319-1324. [59] LI Y, ZHANG P, OUYANY Z, et al. Nanoscale graphene doped with highly dispersed silver nanoparticles: quick synthesis, facile fabrication of 3D membrane-modified electrode, and super performance for electrochemical sensing[J]. Advanced functional materials, 2015, 8(2):133-142. [60] LIANG H G, ZHENG L P, LIAO S J. Self-humidifying membrane electrode assembly prepared by adding PVA as hygroscopic agent in anode catalyst layer[J]. International journal of hydrogen energy, 2012, 37(17): 12860-12867.

相似文献/References:

[1]杜飞鹏,王晶晶,叶恩洲,等.窄分布Ag纳米粒子担载碳纳米管检测过氧化氢[J].武汉工程大学学报,2011,(10):61.
 DU Fei peng,WANG Jing jing,et al.Narrow size distribution silver nanoparticle loaded carbon nanotubesfor hydrogen peroxide determination[J].Journal of Wuhan Institute of Technology,2011,(4):61.
[2]万其进,尚艳利,汪召豪,等.电纺聚乙烯醇纳米纤维膜无酶过氧化氢传感器的制备[J].武汉工程大学学报,2013,(08):7.[doi:103969/jissn16742869201308002]
 WAN Qi jin,SHANG Yan li,WANG Zhao hao,et al.Preparation of hydrogen peroxide nonenzyme biosensor based onPVA nanofibers film by electrospinning[J].Journal of Wuhan Institute of Technology,2013,(4):7.[doi:103969/jissn16742869201308002]
[3]易 琼,邹 彬,欧阳贻德 *,等.醇析法合成过碳酸钠的工艺条件[J].武汉工程大学学报,2014,(12):34.[doi:10. 3969/j. issn. 1674-2869. 2014. 012. 007]
 YI Qiong,ZOU Bin,OUYANG Yi-de,et al.Process conditions of synthesis sodium percarbonate by ethanol deposition method[J].Journal of Wuhan Institute of Technology,2014,(4):34.[doi:10. 3969/j. issn. 1674-2869. 2014. 012. 007]

备注/Memo

备注/Memo:
更新日期/Last Update: 2016-07-29