|本期目录/Table of Contents|

[1]张志忍,王成成,王为国,等.模拟微重力环境及普通环境下小球藻的培养[J].武汉工程大学学报,2016,38(06):521-526.[doi:10. 3969/j. issn. 1674-2016. 06. 002]
 ZHANG Zhiren,WANG Chengcheng,WANG Weiguo,et al.Culture of Chlorella sp. in Simulated Microgravity and General Conditions[J].Journal of Wuhan Institute of Technology,2016,38(06):521-526.[doi:10. 3969/j. issn. 1674-2016. 06. 002]
点击复制

模拟微重力环境及普通环境下小球藻的培养(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
38
期数:
2016年06期
页码:
521-526
栏目:
化学与化学工程
出版日期:
2016-12-15

文章信息/Info

Title:
Culture of Chlorella sp. in Simulated Microgravity and General Conditions
作者:
张志忍王成成王为国汪铁林*王存文
武汉工程大学化工与制药学院,湖北 武汉 430074
Author(s):
ZHANG Zhiren WANG Chengcheng WANG Weiguo WANG Tielin* WANG Cunwen
School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology,Wuhan 430074,China
关键词:
模拟微重力小球藻葡萄糖
Keywords:
simulated microgravity microalgae glucose
分类号:
Q949
DOI:
10. 3969/j. issn. 1674-2016. 06. 002
文献标志码:
A
摘要:
利用旋转细胞培养系统模拟微重力场,考察模拟微重力场及添加不同质量密度葡萄糖对小球藻(Chlorella sp. )生长情况的影响. 研究结果表明,以BG-11为基础培养基,模拟微重力环境对小球藻生长有明显促进作用. 当小球藻细胞接种密度为1.42×107 个/毫升,培养时间为12 d时,普通环境下培养的小球藻最高细胞密度仅为5.80×107 个/毫升,而在相同培养条件下模拟微重力环境下生长的小球藻细胞密度达到1.58×108 个/毫升. 在培养基中添加葡萄糖作为额外碳源后,微藻生长周期显著缩短,适宜小球藻生长的葡萄糖质量密度为10 g/L. 当添加10 g/L葡萄糖,小球藻接种密度为5.76×107 个/毫升,培养时间为5 d时,普通环境和模拟微重力环境下培养的小球藻的最高细胞密度分别可达3.85×108 个/毫升和5.42×108 个/毫升.
Abstract:
The simulated microgravity condition was produced by the Rotary Cell Culture System to investigate effect of glucose mass density and simulated microgravity on the growth of Chlorella sp. . The results show that the simulated microgravity has an obvious promotion effect on the growth of microalgae. The algae cell density under general environment is 5.80×107 cells / mL when the initial cell density is 1.42×107 cells / mL and culture time is 12 days, meanwhile the algae cell density under simulated microgravity condition can reach 1.58×108 cells / mL. Furthermore, the microalgae growth circle is obviously shortened when glucose is added into the culture medium as carbon source. The optimal glucose mass density for the Chlorella sp. growth is 10 g/L. When the initial cell density is 5.76×107 cells / mL and culture time is 5 days, the maximum densities of microalgae cultured in simulated microgravity and general conditions reach 5.42×108 cells / mL and 3.85×108 cells / mL, respectively.

参考文献/References:

[1] CHISTI Y. Biodiesel from microalgae[J]. Biotechnology advances, 2007, 25 (3): 294-306. [2] 沈丰菊. 利用污水大规模培养微藻生产生物柴油技术研究现状[J]. 农业工程技术(新能源产业), 2012(2): 19-22. SHEN F J. Study on cultivation of microalgae on wastewater to produce lipid[J]. Agricultural engineering technology, 2012(2):19-22. [3] VOLKMAN J K, JEFFRE S W, NICHOLS P D, et al. Fatty acid and lipid composition of 10 species of microalgae used in mariculture[J]. Journal of experimental marine biology and ecology, 1989, 128 (3): 219-240. [4] 王逸云,王长海. 无菌条件下的小球藻培养条件优化[J]. 烟台大学学报(自然科学与工程版), 2006, 19 (2): 125-129. WANG Y Y, WANG C H. Culture condition optimization of Chlorella sp. [J]. Journal of Yantai university(natural science and engineering edition),2006,19(2): 125-129. [5] 陆贻超,王丽丽,刘双,等. CO2 浓度对小球藻生长和生化组成的影响[J]. 可再生能源, 2013, 31(7): 64-69. LU Y C, WANG L L, LIU S, et al. Effect of CO2 concentration on growth and biochemical component of Chlorella sorokiniana[J]. Renewable energy resources, 2013, 31(7): 64-69. [6] CONVERTI A, CASAZZA A A, ORTIZ E Y, et al. Effect of temperature and nitrogen concentration on the growth and lipid content of nannochloropsis oculata and chlorella vulgaris for biodiesel production[J]. Chemical engineering and processing: process intensification, 2009, 48 (6): 1146-1151. [7] 胡慧慧. 培养条件对小球藻生长和油脂积累的影响[D]. 宁波: 宁波大学, 2012. [8] 欧阳峥嵘,温小斌,耿亚红, 等. 光照强度, 温度, pH, 盐度对小球藻 (Chlorella) 光合作用的影响[J]. 植物科学学报, 2010, 28 (1): 49-55. OUYANG Z R, WEN X B, GENG Y H, et al. The effects of light intensities, temperatures, pH and sanilities on photosynthesis of Chlorella[J]. Journal of Wuhan botanical research, 2010, 28 (1): 49-55. [9] CRESSWELL R C, REES T A V, SHAH N. Algal and cyanobacterial biotechnology[M]. Manhattan:Longman scientific & technical, Wiley, 1989. [10] FUENTES M R, FERN?NDEZ G A, P?REZ J S, et al. Biomass nutrient profiles of the microalga Porphyridium cruentum[J]. Food chemistry, 2000, 70 (3): 345- 353. [11] WEISENSEEL M H, MEYER A J. Bioelectricity, gravity and plants[J]. Planta, 1997, 203 (1): S98- S106. [12] BRAUN M, BUCHEN B, SIEVERS A. Electron microscopic analysis of gravisensing Chara rhizoids developed under microgravity conditions[J]. The federation of American societies for experimental biology journal, 1999, 13 (sup901): S113-S120. [13] HU Z, LIU Y. Cell responses of Dunaliella salina FACHB 435 (Green Alga) to microgravitational stimulation by clinorotation[J]. Chinese science bulletin, 1998(20): 1737-1742. [14] 陈德辉,章宗涉,陈坚. 藻类批量培养中的比增长率最大值[J]. 水生生物学报,1998(1):26-32. CHEN D H, ZHANG Z S, CHEN J. Maximum specific growth rate of six algal species determined in batch culture[J]. Acta hydrobiologica sinica, 1998(1):26-32. [15] 刘香华,刘雷,曾惠卿. 不同碳源和光照对小球藻生长及产油脂的影响[J]. 安全与环境学报,2012, 12(3):6-10. LIU X H, LIU L, ZENG H Q. Effects of different carbon sources and light intensities on the growth and the lipid properties of Chlorella vulgaris[J]. Journal of safety and environment, 2012, 12(3):6-10. [16] 王秀锦,李兆胜,邢冠岚,等. 蛋白核小球藻 Chlorella pyrenoidosa-15 的异养培养条件优化及污水养殖[J]. 环境科学, 2012, 33 (8): 2735-2740. WANG X J, LI Z S, XING G L, et al. Optimization of Chlorella pyrenoidosa-15 photoheterotrophic culture and its use in wastewater treatment[J]. Environment science, 2012, 33 (8): 2735-2740. [17] 裴静琛,王能达,童伯伦,等. 航天因素对螺旋藻生长的影响[J] 航天医学与医学工程,1992,5(4): 277-280. PEI J C, WANG N D, TONG B L, et al. Influence of space-flight factors on growth of Spirulina[J]. Space medicine and medical engineering, 1992,5(4): 277- 280. [18] 胡章立, 刘永定. 盐生杜氏藻细胞对回转器模拟微重力刺激的反应[J]. 科学通报, 1998(16):1750-1754. HU Z L, LIU Y D. Cell responses of Dunaliella salina to microgravitational stimulation by clinorotation[J]. Chinese science bulletin,1998(16):1750-1754. [19] 胡章立,刘永定,涂欢. 回转器模拟微重力刺激对不同品系稻田鱼腥藻代谢特性的影响[J]. 微生物学报,2001, 41(4):489-493. HU Z L, LIU Y D, TU H. Effect of microgravity simulation with clinostat on different strains in Anabeana oryza[J]. Acta microbiologica sinica, 2001, 41(4):489-493.

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2016-12-23