|本期目录/Table of Contents|

[1]郑 周,叶晓江*,侯志坚,等.碳纳米管纳米流体对液冷式CPU换热性能的改善[J].武汉工程大学学报,2016,38(06):597-598.[doi:10. 3969/j. issn. 1674?2869. 2016. 06. 015]
 ZHENG Zhou,YE Xiaojiang *,HOU Zhijian,et al.Improvement of Heat Transfer Properties of Liquid-Cooled Entral? Processing?Unit by Nanofluids Containing Multi-Walled Carbon Nanotubes[J].Journal of Wuhan Institute of Technology,2016,38(06):597-598.[doi:10. 3969/j. issn. 1674?2869. 2016. 06. 015]
点击复制

碳纳米管纳米流体对液冷式CPU换热性能的改善(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
38
期数:
2016年06期
页码:
597-598
栏目:
机电工程
出版日期:
2016-12-15

文章信息/Info

Title:
Improvement of Heat Transfer Properties of Liquid-Cooled Entral? Processing?Unit by Nanofluids Containing Multi-Walled Carbon Nanotubes
作者:
郑 周13叶晓江12*侯志坚3张艺雪1郑星文1陈 飞13
1. 武汉工程大学理学院,湖北 武汉 430205; 2. 华中科技大学材料科学与工程学院,湖北 武汉 430074; 3. 深圳职业技术学院机电学院,广东 深圳 518055
Author(s):
ZHENG Zhou 13YE Xiaojiang 2*HOU Zhijian 3ZHANG Yixue 1ZHENG Xingwen 1CHENG Fei 13
1. School of Science,Wuhan Institute of Technology,Wuhan 430205, China; 2. School of Materials Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074, China; 3. School of Mechanical and Electrical Engineering,Shenzhen Polytechnic, Shenzhen 518055, China
关键词:
碳纳米管流体液冷CPU 换热性能热阻
Keywords:
MWCNTsnanofluidsliquid-cooled CPUheat transfer performance thermal resistance
分类号:
TB383
DOI:
10. 3969/j. issn. 1674?2869. 2016. 06. 015
文献标志码:
A
摘要:
针对液冷式CPU(central?processing?unit)散热器散热效果差的问题,设计了液冷式CPU散热器的换热性能实验系统. 该实验系统使用基液丙二醇-水,Al2O3纳米流体和多壁碳纳米管(MWCNTs)纳米流体进行换热实验,采用单变量法对实验条件进行控制. 当加热功率为18.26 W时,基液丙二醇-水的热阻值为0.859 ℃/W,质量分数0.135%的Al2O3纳米流体的热阻值为 0.751 ℃/W,质量分数0.135%的多壁碳纳米管纳米流体的热阻值为0.739 ℃/W,质量分数0.32%的MWCNTs纳米流体的热阻值为0.457 ℃/W. 结果表明:在基液中添加纳米粒子能提高基液的换热能力,MWCNTs纳米流体的换热效果随着质量分数的增加而增强.
Abstract:
Aiming at the problem of poor heat dissipation in the liquid-cooled central?processing?unit(CPU) radiator, we designed the heat transfer performance experiment system in the liquid-cooled CPU radiator,by using propylene glycol-water based fluid, and nanofluids containing alumina and multi-walled carbon nanotubes (MWCNTs ) to conduct heat transfer experiment, and we optimized the experimental conditions through the single variable method. When the heating power is 18.26 W,the thermal resistance of propylene glycol-water fluid, alumina nanofluids with mass fraction of 0.135%, and MWCNTs nanofluids with mass fraction of 0.135% and 0.32% were 0.859 ℃/W, 0.751 ℃/W,0.739 ℃/W and 0.457 ℃/W, respectively. The results show that the heat transfer capability of the based fluid improves by adding nanoparticles, and the heat transfer effect of MWCNTs nanofluids enhances with the mass fraction increasing.

参考文献/References:

[1] CHOI S U S. Enhancing thermal conductivity of fluids with nanoparticles[J]. Office of scientific & technical information technical reports,1995,231(1):99-105. [2] LI Y,ZHOU J E,TUNG S,et al. A review on development of nanofluidpreparation and characterization[J]. Powder technology,2009,196(2):89-101. [3] LI C H,PETERSON G P. Experimental investigation of temperature and volume fraction on the effective thermal conductivity of nanoparticle suspensions(nanofluids)[J]. Journal of applied physics,2006,99(8):93-102. [4] LI X F,ZHU D S,WANG X J. Evaluation on dispersion behavior of the aqueous copper nano-suspensions[J]. Journal of colloid & interface science,2007,310(2):456-463. [5] 何钦波,童明伟,刘玉东. 低温相变蓄冷纳米流体成核过冷度的实验研究[J]. 制冷学报,2007,28(4):33-36. HE Q B,TONG M W,LIU Y D. Experimental study on super-cooling degree of nanofluids for cryogenic cool storage[J]. Journal of refrigeration,2007,28(4):33-36. [6] DAS S,PUTTA N,THIESN P,et al. Temperature dependence of thermal conductivity enhancement for nanofluids[J]. Journal of heat transfer,2003,125(4):567-574. [7] EASTMAN J A,CHOIS U S,LI S. Novel thermal properties of nanostructured material[J]. Journal of metastable & nanocrystalline materials,1999,2(6):629-634. [8] MASUDAH,EBATA A,TERAMAE K,et al.Alteration of thermal conductivity and viscosity of liquid by dispersed ultra-fine particles (dispersion of γ-Al2O3 SiO2 and TiO2?ultra-fine particles)[J]. NetsuBussei,1993,7(4):227-233. [9] 李强. 纳米流体强化传热机理研究[D]. 南京:南京理工大学,2003. [10] 郑立国. 碳纳米管-水纳米流体重力热管传热性能研究[D]. 杭州:浙江大学,2007. [11] 宣益民,李强. 纳米流体能量传递理论与应用[M]. 北京:科学出版社,2010. [12] BRINKMAN H C.The viscosity of concentrated suspensions and solution[J]. Journal of chemicalphysics.1952,20(4):571. [13] PAK B C,CHOI Y L.Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Experimental heat transfer,1998,11(2):151-170. [14] KOLE M,DEY T K.Viscosity of alumina nanoparticles dispersed in car engine coolant [J]. Experimental thermal & fluid science,2010,34(6):677-683. [15] 陆正裕,熊建银,屈治国,等. CPU散热器换热特性的实验研究[J]. 工程热物理学报,2004,25(5):862-863. LU Z Y,XIONG J Y,QU Z G,et al.An experimental study on two kinds of heat sinks of CPU[J]. Journal of engineering thermophysics,2004,25(5):862-863.

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2016-12-23