|本期目录/Table of Contents|

[1]郑葛花,郭 畅,张媛媛*,等.基于纳米CeO2/膨胀石墨的四溴双酚A电化学传感[J].武汉工程大学学报,2019,(02):115-120,124.[doi:10. 3969/j. issn. 1674?2869. 2019. 02.]
 ZHENG Gehua,GUO Chang,ZHANG Yuanyuan*,et al.Electrochemical Sensing of Tetrabromobisphenol A Based on Nano-CeO2/Expanded Graphite[J].Journal of Wuhan Institute of Technology,2019,(02):115-120,124.[doi:10. 3969/j. issn. 1674?2869. 2019. 02.]
点击复制

基于纳米CeO2/膨胀石墨的四溴双酚A电化学传感(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
期数:
2019年02期
页码:
115-120,124
栏目:
化学与化学工程
出版日期:
2019-04-18

文章信息/Info

Title:
Electrochemical Sensing of Tetrabromobisphenol A Based on Nano-CeO2/Expanded Graphite
文章编号:
20190203
作者:
郑葛花郭 畅张媛媛*曾 婷万其进*
武汉工程大学化学与环境工程学院,湖北 武汉 430205
Author(s):
ZHENG Gehua GUO Chang ZHANG Yuanyuan* ZENG Ting WAN Qijin*
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
CeO2膨胀石墨四溴双酚A电化学传感器
Keywords:
CeO2 expanded graphite tetrabromobisphenol A electrochemical sensor
分类号:
O657.1
DOI:
10. 3969/j. issn. 1674?2869. 2019. 02.
文献标志码:
A
摘要:
通过一步水热法合成CeO2纳米立方体,通过简单的超声法将CeO2纳米立方体与膨胀石墨(EG)复合,获得对四溴双酚A(TBBPA)具有优异的电催化性能的CeO2/EG复合材料。采用透射电镜对CeO2/EG复合材料的形貌进行了表征,结果表明, CeO2纳米立方体高度分散在EG的表面。基于修饰玻碳电极(GCE),研究了CeO2/EG复合材料、EG和CeO2的电化学特性以及对TBBPA的分析应用。结果表明,表面复合CeO2纳米立方体后,EG的电化学传感性能得到极大增强,这主要是由于CeO2和EG的协同作用,使得CeO2/EG复合材料具有更多的电化学活性位点和更快的电子转移速率。基于以上结果,制备了一种简单高效的分析检测TBBPA的电化学传感器,检出限为3.4 nmol/L(S/N=3)。这种新的传感体系成功应用于实际水样的分析,在实际应用方面具有良好的潜能。
Abstract:
CeO 2 ?nanocubes synthesized via one-step hydrothermal method were composited with expanded graphite (EG) under ultrasonication to obtain?CeO2 nanocubes/expanded graphite (CeO2/EG) with the high electrocatalytic performance toward tetrabromobisphenol A (TBBPA). The morphology of the prepared CeO2/EG composite was characterized by transmission electron microscopy. The results show that CeO2 nanocubes are highly dispersed on the surface of EG. The electrochemical properties of CeO2/EG composites, CeO2 and EG toward TBBPA were investigated based on glassy carbon electrode (GCE). The sensing properties of EG were improved after attached with CeO2 nanocubes. Due to the combination of EG and CeO2, the CeO2/EG composites can provide more electroactive sites and faster electron transfer rate. A simple and efficient electrochemical sensor of TBBPA was successfully fabricated. The detection limit is 3.4 nmol/L for TBBPA. This new sensing system was successfully used in the actual water samples, showing great potential in practical applications.

参考文献/References:

[1] LIAO N, LI Y, JIN S, et al. Effects of catalysts state on the synthesis of MWCNTs modified expanded graphite through microwave-assisted pyrolysis of ethanol[J]. Journal of Materials Science, 2017, 52(19): 1-11. [2] LI H Y, YU Y, LIU L, et al. One-step electrochemically expanded graphite foil for flexible all-solid supercapacitor with high rate performance[J]. Electrochimica Acta, 2017, 228: 553-561. [3] AN Y, FEI H, ZENG G, et al. Commercial expanded graphite as a low-cost, long-cycling life anode for potassium-ion batteries with conventional carbonate electrolyte[J]. Journal of Power Sources, 2018, 378: 66-72. [4] LI H, ZHANG Y Y, WAN Q J, et al. Expanded graphite and carbon nanotube supported palladium nanoparticles for electrocatalytic oxidation of liquid fuels[J]. Carbon, 2018, 131: 111-119. [5] YANG Y, TIAN C G, SUN L, et al. Growth of small sized CeO2 particles in the interlayers of expanded graphite for high-performance room temperature NOx gas sensors[J]. Journal of Materials Chemistry A, 2013(41): 12742-12749. [6] BUAN M E M, MUTHUSWAMY N, WALMSLEY J C, et al. Nitrogen-doped carbon nanofibers on expanded graphite as oxygen reduction electrocatalysts[J]. Carbon, 2016, 101: 191-202. [7] L?VY-BIMBOT M, MAJOR G, COURILLEAU D, et al. Tetrabromobisphenol-A disrupts thyroid hormone receptor alpha function in vitro: Use of fluorescence polarization to assay corepressor and coactivator peptide binding[J]. Chemosphere, 2012, 87(7): 782-788. [8] ZACS D, RJABOVA J, IKKERE L E, et al. Brominated flame retardants and toxic elements in the meat and liver of red deer (Cervus elaphus), wild boar (Sus scrofa), and moose (Alces alces) from Latvian wildlife[J]. Science of the Total Environment, 2017, 621: 308-316. [9] ZHU B, ZHAO G, YANG L H, et al. Tetrabromobisphenol A caused neurodevelopmental toxicity via disrupting thyroid hormones in zebrafish larvae[J]. Chemosphere, 2018, 197: 353-361. [10] GARCIA L M, DRIFFIELD M, FERNANDES A R , et al. Occurrence of polybrominated diphenylethers,hexabromocyclododecanes, bromophenols and tetrabromobisphenols A and S in Irish foods[J]. Chemosphere, 2018, 197: 709-715. [11] YIN N Y, LIANG S J, LIANG S X, et al. TBBPA and its alternatives disturb the early stages of neural development by interfering with the notch and wnt pathways[J]. Journal of Environmental Science and Technology, 2018, 52(9): 5459-5468. [12] CHEN X R, JI L D, ZHOU Y K, et al. Electrochemical enhancement of long alkyl-chained surfactants for sensitive determination of tetrabromobisphenol A[J]. Electrochimica Acta, 2016, 190: 490-494. [13] ZHAO Q, ZHANG K, YU G X, et al. Facile electrochemical determination of tetrabromobisphenol A based on modified glassy carbon electrode[J]. Talanta, 2016, 151: 209-216. [14] WANG Y Y, LIU G S, HOU X D, et al. Assembling gold nanorods on a poly-cysteine modified glassy carbon electrode strongly enhance the electrochemical reponse to tetrabromobisphenol A[J]. Microchimica Acta, 2016, 183: 689-696. [15] YAN L, YU R B, CHEN J, et al. Template- free hydrothermal synthesis of CeO2 nano-octahedrons and nanorods: investigation of the morphology evolution[J]. Crystal Growth & Design, 2008, 8(5): 1474-1477. [16] ANEGGI E , WIATER D , LEITENBURG C D, et al. Shape-dependent activity of ceria in soot combustion[J]. Acs Catalysis, 2014, 4(1): 172-181. [17] SI R, FLYTZANI-STEPHANOPOULOS M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction[J]. Angewandte Chemie International Edition, 2008, 47(15): 2884-2887. [18] DANG Y, CUI R R, WANG X J, et al. The construction of an electrochemical sensing interface based on nano-CeO2,?cubes for highly sensitive detection of bisphenol A[J]. New Journal of Chemistry, 2018, 42: 13856. [19] LI Z, YUE Y H, HAO Y J, et al. A glassy carbon electrode modified with cerium phosphate nanotubes for the simultaneous determination of hydroquinone, catechol and resorcinol[J]. Microchimica Acta, 2018, 185(4):215.本文编辑:张 瑞

相似文献/References:

[1]严 鹏,王庆虎,余 俊,等.辛基酚的碳化硅@膨胀石墨修饰电极法检测[J].武汉工程大学学报,2017,39(02):113.[doi:10. 3969/j. issn. 1674?2869. 2017. 02. 003]
 YAN Peng,WANG Qinghu,YU Jun,et al.Detection of Octylphenolusing with Silicon Carbide @ Expanded Graphite Modified Electrodes[J].Journal of Wuhan Institute of Technology,2017,39(02):113.[doi:10. 3969/j. issn. 1674?2869. 2017. 02. 003]

备注/Memo

备注/Memo:
收稿日期:2019-01-05基金项目:国家自然科学基金(61701352)作者简介:郑葛花,硕士研究生。E-mail:1477701080@qq.com*通讯作者:万其进,教授,博士生导师。E-mail:rsqijinwan@163.com;张媛媛,博士,讲师,硕士研究生导师。E-mail:yyzhang@wit.edu.cn引文格式:郑葛花,郭畅,张媛媛,等. 基于纳米CeO2/膨胀石墨的四溴双酚A电化学传感[J]. 武汉工程大学学报,2019,41(2):115-120,124.
更新日期/Last Update: 2019-04-20