|本期目录/Table of Contents|

[1]肖 胜,王 倩,钟慧勉,等.作用于配体门控氯离子通道3-羟基异噁(噻)唑衍生物的研究进展[J].武汉工程大学学报,2020,42(04):360-365.[doi:10.19843/j.cnki.CN42-1779/TQ.201910037]
 XIAO Sheng,WANG qian,ZHONG Huimian,et al.Advances in 3-Hydroxyisoxazole (3-Hydroxyisothiazole) Analogues Acting on Ligand-Gated Chloride Channels[J].Journal of Wuhan Institute of Technology,2020,42(04):360-365.[doi:10.19843/j.cnki.CN42-1779/TQ.201910037]
点击复制

作用于配体门控氯离子通道3-羟基异噁(噻)唑衍生物的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
42
期数:
2020年04期
页码:
360-365
栏目:
化学与化学工程
出版日期:
2021-01-28

文章信息/Info

Title:
Advances in 3-Hydroxyisoxazole (3-Hydroxyisothiazole) Analogues Acting on Ligand-Gated Chloride Channels
文章编号:
1674 - 2869(2020)04 - 0360 - 06
作者:
肖 胜王 倩钟慧勉巨修练刘根炎*
武汉工程大学化工与制药学院,湖北 武汉 430205
Author(s):
XIAO Sheng WANG qian ZHONG Huimian JU Xiulian LIU Genyan*
School of Chemical Engineering and Pharmacy,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
3-羟基异噁唑3-羟基异噻唑γ-氨基丁酸受体谷氨酸受体
Keywords:
3-hydroxyisoxazole 3-hydroxyisothiazole GABA receptors glutamate receptors
分类号:
O626
DOI:
10.19843/j.cnki.CN42-1779/TQ.201910037
文献标志码:
A
摘要:
3-羟基异噁(噻)唑衍生物是一类重要的五元杂环化合物,具有丰富的药理和生理活性,在医药、农药、化工等领域有广泛的应用。部分3-羟基异噁(噻)唑化合物对γ-氨基丁酸和谷氨酸门控氯离子通道受体有显著的激动或拮抗作用。综述了三类典型的3-羟基异噁(噻)唑衍生物:蝇蕈醇类,5-(4-哌啶基)-3-羟基异噁唑类和鹅膏氨酸类,介绍了这三类化合物作为γ-氨基丁酸和谷氨酸受体激动剂或拮抗剂的应用,并对这些化合物的进一步分子设计进行了展望。对异噁(噻)唑环进行结构修饰是设计配体门控氯离子通道激动剂或拮抗剂的关键,在环上引入不同取代基或构造双环可能导致3-羟基异噁(噻)唑衍生物的药理活性发生显著变化,有助于发现药物或农药的苗头化合物。
Abstract:
3-Hydroxyl isoxazoles (or isothiazoles) are an important class of five-membered heterocyclic compounds with pharmacological and physiological activities, and have been widely applied in the fields of medicine, pesticide, and chemical engineering. 3-Hydroxyl isoxazoles (or isothiazoles) have significant agonism or antagonism effect on γ-aminobutyric acid-and glutamate-gated chloride ion channels. We reviewed three representative types of 3-hydroxyl isoxazoles (or isothiazoles): muscimols, 5-(4-piperidyl)-3-isoxazolols and ibotenic acids, and described their applications as agonist or antagonist leads of γ-aminobutyric acid and glutamate receptors, and prospected their further molecular design. The key strategy for designing the agonists or antagonists of ligand-gated chloride ion channels is to modify the isothiazole or isoxazole ring. The introduction of different substituents on the ring or the construction of a bicyclic ring might lead to great changes in the pharmacological activity of these 3-hydroxyl isoxazoles (or isothiazoles), which could be helpful in finding hit compounds of drugs or pesticides.

参考文献/References:

[1] S?RENSEN U S, KROGSGAARD-LARSEN P. Synthesis and synthetic utility of 3-isoxazolols[J]. Organic Preparations and Procedures International, 2001, 33(6): 515-564. [2] COX J R, WOODCOCK S, HILLIER I H, et al. Tautomerism of 1,2,3-and 1,2,4-triazole in the gas phase and in aqueous solution: a combined ab initio quantum mechanics and free energy perturbation study[J]. Journal of Physical Chemistry, 2002, 94(14): 5499-5501. [3] BOULTON A J, KATRITZKY A R. The tautomerism of heteroaromatic compounds with five-membered rings 5-hydroxyisoxazoles-isoxazol-5-ones[J]. Tetrahedron, 1961, 12(1): 41-50. [4] MAKHOVA N N, BELEN’KII L I, GAZIEVA G A, et al. Progress in the chemistry of nitrogen-, oxygen-and sulfur-containing heterocyclic systems[J]. Russian Chemical Reviews, 2020, 89(1): 55-124. [5] CHEN T J, FR?HLICH N, KULA B, et al. Glutamate activates AMPA receptor conductance in the developing Schwann cells of the mammalian peripheral nerves[J]. Journal of Neuroscience, 2017, 37(49): 11818-11834. [6] MAYER M L. Glutamate receptor ion channels[J]. Current Opinion in Neurobiology, 2005, 15(3): 282-288. [7] KEW J N, KEMP J A. Ionotropic and metabotropic glutamate receptor structure and pharmacology[J]. Psychopharmacology, 2005, 179(1): 4-29. [8] ROBERTS E, FRANKEL S. γ-Aminobutyric acid in brain: its formation from glutamic acid[J]. Journal of Biological Chemistry, 1950, 187(1): 55-63. [9] LIU G, OZOE F, FURUTA K, et al. 4, 5-substituted 3-isoxazolols with insecticidal activity act as competitive antagonists of housefly GABA receptors[J]. Journal of Agricultural and Food Chemistry, 2015, 63(28): 6304-6312. [10] AWAPARA J, LANDUA A J, FUERST R, et al. Free γ-aminobutyric acid in brain[J]. Journal of Biological Chemistry, 1950, 187(56): 35-39. [11] KRALL J, BALLE T, KROGSGAARD-LARSEN N, et al. GABAA receptor partial agonists and antagonists: structure, binding mode, and pharmacology[J]. Advances in Pharmacology, 2015, 15(3): 201-227. [12] OTSUKA M, IVERSEN L, HALL Z, et al. Release of γ-aminobutyric acid from inhibitory nerves of lobster[J]. Proceedings of the National Academy of Sciences of the United States of America, 1966, 56(4): 1110- 1124. [13] OZOE Y. γ-Aminobutyrate- and glutamate-gated chloride channels as targets of insecticides[J]. Advances in Insect Physiology, 2013, 44(6): 211-286. [14] J?RGENSEN C G, CLAUSEN R P, HANSEN K B, et al. Synthesis and pharmacology of glutamate receptor ligands: new isothiazole analogues of ibotenic acid[J]. Organic and Biomolecular Chemistry, 2007, 5(3): 463-471. [15] SIEGHART W. Structure and pharmacology of γ-aminobutyric acidA receptor subtypes[J]. Pharma-cological Reviews, 1995, 47(2):181-234. [16] HEVERS W, L?DDENS H. The diversity of GABAA receptors[J]. Molecular Neurobiology, 1998, 18(1): 35-86. [17] 巨修练. GABAA受体及其非竞争性拮抗剂的研究进展[J]. 世界农药, 2007, 29(1): 28-33. [18] PUTHENKALAM R, HIECKEL M, SIMEONE X, et al. Structural studies of GABAA receptor binding sites: which experimental structure tells us what?[J]. Frontiers in Molecular Neuroscience, 2016, 9(3): 44-52. [19] 郑小娇, 李华光, 刘根炎, 等. 昆虫γ-氨基丁酸受体竞争性拮抗剂的研究进展[J]. 农药学学报, 2017, 19(6): 665-671. [20] OLSEN R W. Allosteric ligands and their binding sites define GABAA receptor subtypes[J]. Advances in Pharmacology, 2015, 73: 167-202. [21] KAUPMANN K, HUGGEL K, HEID J, et al. Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors[J]. Nature, 1997, 386(6622): 239-248. [22] BONANNO G, FASSIO A, SALA R, et al. GABAB receptors as potential targets for drugs able to prevent excessive excitatory amino acid transmission in the spinal cord[J]. European Journal of Pharmacology, 1998, 362(2): 143-148. [23] OZOE Y. ?Advances in agrochemicals: ion channels and g protein-coupled receptors (GPCRs) as targets for pest control[M]. Washington D C :American Chemical Society, 2017: 19-36. [24] 曹德茂, 申宝玺, 武永康, 等. 谷氨酸受体以及兴奋性毒性研究进展[J]. 中华神经创伤外科电子杂志, 2017, 3(2): 109-113. [25] BR?UNER-OSBORNE H, EGEBJERG J, NIELSEN E ?, et al. Ligands for glutamate receptors: design and therapeutic prospects[J]. Journal of Medicinal Chemistry, 2000, 43(14): 2609-2645. [26] PFAFF D W, VOLKOW N D. Neuroscience in the 21st century: from basic to clinical[M]. 2nd ed.New York, Heidelberg,Dordrecht,London:Springer, 2016. [27] RIBEIRO F M, VIEIRA L B, PIRES R G, et al. Metabotropic glutamate receptors and neurodegenerative diseases[J]. Pharmacological Research, 2017, 115(6): 179-191. [28] KOEHL A, HU H, FENG D, et al. Structural insights into the activation of metabotropic glutamate receptors[J]. Nature, 2019, 566(7742): 79-88. [29] EUGSTER C, MUELLER G, GOOD R. The active ingredients from Amanita muscaria: ibotenic acid and muscazone[J]. Tetrahedron Letters, 1965(23): 1813-1815. [30] JOHNSTON G A. Muscimol as an ionotropic GABA receptor agonist[J]. Neurochemical Research, 2014, 39(10): 1942-1947. [31] KROGSGAARD-LARSEN P, JOHNSTON G A, CURTIS D, et al. Structure and biological activity of a series of conformationally restricted analogues of GABA[J]. Journal of Neurochemistry,1975,25(6): 803-809. [32] BENKHEROUF A Y, TAINA K R, MEERA P, et al. Extrasynaptic δ-GABAA receptors are high-affinity muscimol receptors[J]. Journal of Neurochemistry, 2019, 149(1): 41-53. [33] WINKLER P, LUHMANN H J, KILB W. Taurine potentiates the anticonvulsive effect of the GABAA agonist muscimol and pentobarbital in the immature mouse hippocampus[J]. Epilepsia, 2019, 60(3): 464-474. [34] MOSS M J, HENDRICKSON R G. Toxicity of muscimol and ibotenic acid containing mushrooms reported to a regional poison control center from 2002-2016[J]. Clinical Toxicology, 2019, 57(2): 99-103. [35] KROGSGAARD-LARSEN P, HJEDS H, CURTIS D, et al. Dihydromuscimol, thiomuscimol and related heterocyclic compounds as GABA analogues[J]. Journal of Neurochemistry, 1979, 32(6): 1717-1724. [36] MAZZONE G L, NISTRI A. Modulation of extrasynaptic GABAergic receptor activity influences glutamate release and neuronal survival following excitotoxic damage to mouse spinal cord neurons[J]. Neurochemistry International, 2019, 128(2): 175-185. [37] HAKATA S, TAKAHASHI A, IURA A, et al. The role of GABAA receptor δ subunit and its agonist THIP in thermal hypersensitivity in a mouse model of neuropathic pain[J]. Journal of Pain and Relief, 2018, 7(1): 2167-0846. [38] GAO H, DERBENEV A V. Bicuculline sensitive tonic current in RVLM neurons[J]. The FASEB Journal, 2016, 30(1): 1233-1238. [39] HANDFORTH A, KADAM P A, KOSOYAN H P, et al. Suppression of harmaline tremor by activation of an extrasynaptic GABAA receptor: implications for essential tremor[J]. Tremor and Other Hyperkinetic Movements, 2018, 8(1): 28-38. [40] SIMONSEN C, BODDUM K, VON SCHOUBYE N L, et al. Anticonvulsive evaluation of THIP in the murine pentylenetetrazole kindling model: lack of anticonvulsive effect of THIP despite functional δ-subunit-containing GABAA receptors in dentate gyrus granule cells[J]. Pharmacology Research and Perspectives, 2017, 5(4): 322-335. [41] MORTENSEN M, KRALL J, KONGSTAD K T, et al. Developing new 4-PIOL and 4-PHP analogues for photo-inactivation of γ-aminobutyric acid type A receptors[J]. ACS Chemical Neuroscience, 2019, 8(3): 58-66. [42] FR?LUNDB, JENSEN L S, STORUSTOVU S I, et al. 4-Aryl-5-(4-piperidyl)-3-isoxazolol GABAA antagonists:? synthesis, pharmacology, and structure-activity relationships[J]. Journal of Medicinal Chemistry, 2007, 50(8): 1988-1992. [43] LIU G, FURUTA K, NAKAJIMA H, et al. Competitive antagonism of insect GABA receptors by 4-substituted 5-(4-piperidyl)-3-isothiazolols[J]. Bioorganic and Medicinal Chemistry, 2014, 22(17): 4637-4645. [44] LUMPERT M, KREFT S. Catching flies with Amanita muscaria: traditional recipes from Slovenia and their efficacy in the extraction of ibotenic acid[J]. Journal of Ethnopharmacology, 2016, 187(2): 1-8. [45] SAAR-REISMAA P, VAHER M, KALJURAND M, et al. Simultaneous determination of γ-hydroxybutyric acid, ibotenic acid and psilocybin in saliva samples by capillary electrophoresis coupled with a contactless conductivity detector[J]. Analytical Methods, 2017, 9(21): 3128-3133. [46] LUMPERT M, KREFT S. Effects of heat and mechanical processing on release of ibotenic acid from Amanita muscaria in traditional preparations used for catching flies in Slovenia[J]. Planta Medica, 2015, 81(16): 30-35. [47] MIKASZEWSKA-SOKOLEWICZ M A, PANKOWSKA S, JANIAK M, et al. Coma in the course of severe poisoning after consumption of red fly agaric[J]. Acta Biochimica Polonica, 2016, 63(1): 181-182.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-10-16基金项目:国家自然科学基金(21807082);国家级大学生创新创业训练计划(201910490003);湖北省自然科学基金(2017CFB121);湖北省教育厅科学技术研究项目(Q20171503)作者简介:肖 胜,硕士研究生。E-mail:1379149465@qq.com*通讯作者:刘根炎,博士,特聘教授,硕士研究生导师。E-mail:liugenyan@wit.edu.cn引文格式:肖胜,王倩,钟慧勉,等. 作用于配体门控氯离子通道3-羟基异噁(噻)唑衍生物的研究进展[J]. 武汉工程大学学报,2020,42(4):360-365.
更新日期/Last Update: 2020-08-12