|本期目录/Table of Contents|

[1]田 斌,夏 航.CoNi镀层长度对软/硬磁微丝微波磁性的影响[J].武汉工程大学学报,2020,42(05):581-584.[doi:10.19843/j.cnki.CN42-1779/TQ. 202005006]
 TIAN Bin,XIA Hang.Influence of CoNi Coating Length on Microwave Magnetic of Soft/Hard Magnetic Microwires[J].Journal of Wuhan Institute of Technology,2020,42(05):581-584.[doi:10.19843/j.cnki.CN42-1779/TQ. 202005006]
点击复制

CoNi镀层长度对软/硬磁微丝微波磁性的影响(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
42
期数:
2020年05期
页码:
581-584
栏目:
机电与信息工程
出版日期:
2021-01-29

文章信息/Info

Title:
Influence of CoNi Coating Length on Microwave Magnetic of Soft/Hard Magnetic Microwires
文章编号:
1674 - 2869(2020)05 - 0581 - 04
作者:
田 斌夏 航
武汉工程大学 电气信息学院,湖北 武汉 430205
Author(s):
TIAN Bin XIA Hang
School of Electrical & Information Engineering , Wuhan Institute of Technology, Wuhan 430205, China
关键词:
双相磁性合金微丝巨磁阻抗铁磁共振微波
Keywords:
biphase microwire giant magneto-impedance ferromagnetic resonance microwave
分类号:
TN604
DOI:
10.19843/j.cnki.CN42-1779/TQ. 202005006
文献标志码:
A
摘要:
采用熔融拉丝法和磁控溅射方法制备了Co59.1Fe14.8Si10.2B15.9\Au复合结构微丝。研究了硬磁层长度对软磁/硬磁双相磁性微丝的巨磁阻抗效应及微波磁性能的影响。通过测量不同硬磁层长度的软磁/硬磁双相磁性微丝在0.1~14 GHz范围内的巨磁阻抗效应和电阻谱,发现当CoNi镀层长度L=5 mm时,MI谱出现最大值的频率f=1.6 GHz,电阻谱出现两个峰FMR0和FMR1。随着硬磁层长度的增加,一方面MI谱出现最大值的频率向低频段移动,另一方面,发生铁磁共振的损耗也被进一步降低。研究成果可以应用于微波磁性传感器的研发。
Abstract:
Co59.1Fe14.8Si10.2B15.9\Au composite microwires were prepared by melt drawing and magnetron sputtering techniques. The influences of the length of hard magnetic layer on the giant magneto-impedance effect and microwave magnetic properties of soft/hard magnetic dual-phase magnetic microwires were investigated. The giant magneto-impedance effect and resistance spectra of soft/hard magnetic biphasic microwires with different hard layer lengths were measured in a range of working frequencies from 0.1 to 14 GHz. It was found that when the length of CoNi coating L equals to 5 mm, the maximum frequency of giant magneto-impedance effect spectrum reaches 1.6 GHz, and two peaks FMR0 and FMR1 appear in the resistance spectrum. The frequency of the maximum MI spectrum approaches low frequency band, and the loss of ferromagnetic resonance also reduces with the increase of the length of hard magnetic layer. The research results can be applied to the research and development of microwave magnetic sensors.

参考文献/References:

[1] 郭兴玲, 许磊. 一种高分辨率高灵敏度的巨磁阻抗效应非晶丝微磁传感器研制[J]. 功能材料与器件学报, 2019(2):88-93. [2] 邵先亦, 徐爱娇, 王天乐. 外磁场与带轴夹角对非晶FeSiB/Cu/FeSiB三明治薄带巨磁阻抗特性的影响[J]. 物理学报, 2019, 68(6):201-208. [3] 瞿洁, 陈丽敏, 李俊,等. 材料高压相变的理论模拟研究进展[J]. 武汉工程大学学报, 2018, 40(3):267-272. [4] 许校嘉, 陆轩昂, 方峥,等. 退火温度对Fe基非晶薄带磁性能的影响[J]. 材料科学,2019,9(4):347- 354. [5] LE A T , KIM C O , LEE H B . Excellent response of giant magnetoimpedance effect in a glass-coated microwire LC-resonator[J]. Solid State Phenomena, 2007, 124/125/126:875-878. [6] WU Z M, ZHAO Z J, LIU L P, et al. Resonance enhancement of the giant magnetoimpedance effect in glass-coated microwires with outer conductive layer[J]. IEEE Transactions on Magnetics, 2007, 43(7):3146- 3148. [7] JIN F, TU X, WANG J C, et al. Noise modeling and simulation of giant magnetic impedance(GMI) magnetic sensor[J]. Sensors, 2020, 20(4):960. [8] LE A T , PHAN M H . Advanced magnetic microwires as sensing elements for LC-resonant-type magnetoimpedance sensors: a comprehensive review[J]. Journal of Superconductivity & Novel Magnetism, 2012, 25(2):181-195. [9] 张振川, 段修生. 基于钴基非晶丝的巨磁阻抗效应多特征表征方法[J]. 科学技术与工程, 2018, 18(7):159-165. [10] WU Z M , ZHAO Z J , LIU L P , et al. Enhancement of giant magento-impedance effect using lc resonance[J]. Surface Review and Letters, 2008, 15(2):87-90. [11] LEUNG C M , ZHUANG X , XU J , et al. Enhanced tunability of magneto-impedance and magneto- capacitance in annealed Metglas/PZT magnetoelectric composites [J]. Aip Advances, 2018, 8(5):055803. [12] 黄衍标,安娟,陈华珍, 等. 基于巨磁阻抗传感器的心磁信号检测的研究[J]. 计算机工程与应用,2018,54(4):250-255,270. [13] 陆轩昂,王卓,王丽梅, 等. 低温应力退火Fe基合金薄带巨磁阻抗特性的研究[J]. 功能材料, 2020, 51(3):3102-3107. [14] 潘仲明,周晗,张大厦, 等. 国外巨磁阻抗传感器检测电路技术的发展动态[J]. 仪器仪表学报,2017,38(4):781-793. [15] 邸永江,钟志强,望军. 短玻璃包覆合金微丝的静磁性能分析与模拟[J]. 重庆科技学院学报(自然科学版),2012,14(2):105-107. [16] 陈亚博,杨晓阔,危波, 等. 非对称条形纳磁体的铁磁共振频率和自旋波模式[J]. 物理学报,2020,69(5):209-217. [17] 王龙,宋玉军,张涛. 磁退火处理对玻璃包覆钴基非晶合金复合微丝磁电性能的影响[J]. 稀有金属,2014,38(5):819-826. [18] 别少伟, 江建军, 马强,等. 高电阻率多层纳米颗粒膜软磁特性及微波磁导率[J]. 物理学报, 2008, 57(4):2514-2518. [19] TIAN B, VAZQUEZ M . LC and ferromagnetic resonance in soft/hard magnetic microwires[J]. Journal of Magnetism and Magnetic Materials, 2015, 395:196-198. [20] 彭国豪,朱永忠,刘晓宇. 磁电双可调滤波器研究进展[J]. 空间电子技术,2020,17(1):1-8.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2020-05-08作者简介:田 斌,博士,副教授。E-mail:tianbinwh@wit.edu.cn引文格式:田斌,夏航. CoNi镀层长度对软/硬磁微丝微波磁性的影响[J]. 武汉工程大学学报,2020,42(5):581-584.
更新日期/Last Update: 2020-11-02