|本期目录/Table of Contents|

[1]贺琦祺,刘天一,吴远帅,等.自旋交叉配合物[Fe(Htrz)2(trz)](BF4)的研究进展[J].武汉工程大学学报,2021,43(01):21-29.[doi:10.19843/j.cnki.CN42-1779/TQ.202010029]
 HE Qiqi,LIU Tianyi,WU Yuanshuai,et al.Advances of Spin Crossover Complex Based on [Fe(Htrz)2(trz)](BF4)[J].Journal of Wuhan Institute of Technology,2021,43(01):21-29.[doi:10.19843/j.cnki.CN42-1779/TQ.202010029]
点击复制

自旋交叉配合物[Fe(Htrz)2(trz)](BF4)的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年01期
页码:
21-29
栏目:
化学与化学工程
出版日期:
2021-02-28

文章信息/Info

Title:
Advances of Spin Crossover Complex Based on [Fe(Htrz)2(trz)](BF4
文章编号:
1674 - 2869(2021)01 - 0021 - 09
作者:
贺琦祺1刘天一1吴远帅1刘青喜2杨克聪1石胜伟*1
1. 武汉工程大学材料科学与工程学院,湖北 武汉 430205;2. 宁波阿迩法医药化工有限公司,浙江 宁波 315099
Author(s):
HE Qiqi1 LIU Tianyi1 WU Yuanshuai1 LIU Qingxi2 YANG Kecong1 SHI Shengwei*1
1. School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China;2. Ningbo Aerfa Pharmaceutical Chemical Co., Ltd, Ningbo 315099, China
关键词:
自旋交叉配合物Fe(Htrz)2(trz)](BF4自旋转变室温温度诱导磁滞器件应用
Keywords:
spin crossover complex Fe(Htrz)2(trz)](BF4 spin transition room temperature temperature- induced magnetic hysteresis device application
分类号:
O441.2
DOI:
10.19843/j.cnki.CN42-1779/TQ.202010029
文献标志码:
A
摘要:
自旋交叉配合物[Fe(Htrz)2(trz)](BF4)在室温附近表现出较宽的温度磁滞现象,在光热开光、信息显示以及数据存储等方面具有潜在的应用,是目前自旋交叉领域最值得关注的配合物之一。本文主要从材料合成方法、性能影响因素以及器件应用等方面对[Fe(Htrz)2(trz)](BF4)分子材料近十年来的研究进展进行了系统的介绍。[Fe(Htrz)2(trz)](BF4)的合成方法主要有简单混合和反相胶束法,此外为了消除合成过程中的分子团聚,通常在反应体系中引入具有较大比表面积的分散基质,比如介孔二氧化硅、氧化石墨烯等;自旋交叉性能的影响因素主要包括表面活性剂、分子内的结晶水、外部压强、热退火以及机械球磨等;器件应用方面主要从[Fe(Htrz)2(trz)](BF4)分子薄膜的制备出发,讨论了相关的器件应用进展。最后,本文对[Fe(Htrz)2(trz)](BF4)的最新研究进展进行了总结,并对[Fe(Htrz)2(trz)](BF4)的未来发展趋势进行了展望。而[Fe(Htrz)2(trz)](BF4)的新型薄膜制备工艺可以为相关器件制备打下扎实的基础,从而推动自旋交叉配合物的应用发展。
Abstract:
The spin crossover complex of [Fe(Htrz)2(trz)](BF4) exhibits a wide temperature-induced magnetic hysteresis near room temperature, and it is one of the star complexes which deserves the most attention in the field of spin crossover due to its potential applications in optical/thermal switching, information display and data storage, etc. This paper mainly summarizes the progress of [Fe(Htrz)2(trz)](BF4) molecular material in recent ten years including the synthesis routes, impact factors and device applications. The synthesis routes of [Fe(Htrz)2(trz)](BF4) can be mainly divided into simple blending and inversed micelle methods. In addition, to eliminate the molecular agglomeration during the synthesis, dispersion mediums such as mesoporous silica, graphene oxide with large specific surface area are generally introduced to the reaction system. The impact factors of spin crossover property mainly include surfactants, intramolecular crystal water, external pressure, thermal annealing and mechanical ball milling. Device applications are discussed from the fabrication of molecular films of [Fe(Htrz)2(trz)](BF4) to the progress of different devices. Finally, the recent progress of [Fe(Htrz)2(trz)](BF4) are summarized together with the perspective to the future directions. In the future step, the novel techniques of film preparation for [Fe(Htrz)2(trz)](BF4) may provide solid foundations for related device fabrication, pushing the development of device application for spin crossover complexes.

参考文献/References:

[1] HRUDKA J J,PHAN H,LENGYEL J,et al. Power of three:incremental increase in the ligand field strength of N-alkylated 2,2′-biimidazoles leads to spin crossover in homoleptic tris-chelated Fe(II) complexes [J]. Inorganic Chemistry,2018,57(9):5183-5193. [2] GüTLICH P, GARCIA Y, GOODWIN H A. Spin crossover phenomena in Fe(II)complexes [J]. Chemical Society Reviews,2000,29(6):419-427.[3] FéLIX G, NICOLAZZI W, SALMON L, et al. Enhanced cooperative interactions at the nanoscale in spin-crossover materials with a first-order phase transition [J]. Physical Review Letters,2013,110(23):235701.[4] KEPENEKIAN M, COSTA J S, GUENNIC B L,et al. Reliability and storage capacity:a compromise illustrated in the two-step spin-crossover system [Fe(bapbpy)(NCS)2] [J]. Inorganic Chemistry,2010,49(23):11057-11061.[5] KOO Y S,GALAN-MASCAROS J R. Spin crossover probes confer multi stability to organic conducting polymers [J]. Advanced Materials,2014,26:6785-6789.[6] WEI R J,HUO Q,TAO J,et al. Spin-crossover Fe(II)4 squares:two-step complete spin transition and reversible single-crystal-to-single-crystal transformation[J]. Angewandte Chemie International Edition,2011,50(38):8940-8943.[7] KAHN O, KR?BER J, JAY C. Spin transition molecular materials for displays and data recording [J]. Advanced Materials,1992,4(11):718-728.[8] MATSUDA M, ISOZAKI H, TAJIMA H. Electroluminescence quenching caused by a spin-crossover transition [J]. Chemistry Letters,2008,37(3):374-375.[9] GüTLICH P,GARCIA Y,WOIKE T. Photoswitchable coordination compounds [J]. Coordination Chemistry Reviews,2011,221:839-879.[10] NAKAMOTO A,ONO Y,KOJIMA N,et al. Spin crossover complex film, [FeII(H-trz)3]-Nafion, with a spin transition around room temperature [J]. Chemistry Letters,2003,32(4):336-337.[11] SHI S,SCHMERBER G,ARABSKI J,et al. Study of molecular spin-crossover complex Fe(phen)2(NCS)2 thin films [J]. Applied Physics Letters,2009,95(4):4-7.[12] KITCHEN J A,WHITE N G,GANDOLFI C,et al. Room-temperature spin crossover and langmuir-blodgett film formation of an iron(II) triazole complex featuring a long alkyl chain substituent:the tail that wags the dog [J].Chemical Communications,2010,16(35):6464-6466.[13] HALDER G J,KEPERT C J,MOUBARAKI B,et al. Guest-dependent spin crossover in a nanoporous molecular framework material [J]. Science,2002,298(5599):1762-1765.[14] GALET A,NIEL V,MU?OZ M C,et al. Synergy between spin crossover and metallophilicity in triple interpenetrated 3D nets with the NbO structure type [J]. Journal of the American Chemical Society,2003,125(47):14224-14225.[15] WU D Y, SATO O ,EINAGA Y, et al. A spin-crossover cluster of iron(II) exhibiting a mixed-spin structure and synergy between spin transition and magnetic interaction [J]. Angewandte Chemie-International Edition, 2009, 48(8):1475-1478.[16] NI Z P,LIU J L,HOGUE N,et al. Recent advances in guest effects on spin-crossover behavior in Hofmann-type metal-organic frameworks [J]. Coordination Chemistry Reviews,2017,335:28-43.[17] MAHFOUD T, MOLNáR G, COBO S, et al. Electrical properties and non-volatile memory effect of the [Fe(HB(pz)3)2] spin crossover complex integrated in a microelectrode device [J]. Applied Physics Letters,2011,99(5):2012-2015.[18] HALCROW M A. Structure: function relationships in molecular spin-crossover complexes [J]. Chemical Society Reviews,2011,40(7):4119-4142.[19] GAO D M,LIU Y,MIAO B,et al. Pressure sensor with a color change at room temperature based on spin-crossover behavior [J]. Inorganic Chemistry,2018,57(20):12475-12479.[20] JURESCHI C M, LINARES J , ROTARU A, et al. Pressure sensor via optical detection based on 1D spin transition coordination polymer [J]. Sensors,2015,15(2):2388-2398.[21] KR?BER J,AUDIèRE J P,CLAUDE R,et al. Spin transitions and thermal hysteresis in the molecular-based materials [Fe(Htrz)2(trz)](BF4) and [Fe(Htrz)3](BF4)2·H2O (Htrz = 1,2,4-4H-triazole; trz = 1,2,4-triazolato) [J]. Chemistry of Materials,1994,6(8):1404-1412.[22] MICHALOWICZ A,MOSCOVICI J,DUCOURANT B,et al. EXAFS and X-ray powder diffraction studies of the spin transition molecular materials [Fe(Htrz)2(trz)](BF4) and [Fe(Htrz)3](BF4)2·H2O (Htrz = 1,2,4-4H-triazole; trz = 1,2,4-triazolato) [J]. Chemistry of Materials,1995,2(17):1833-1842.[23] CORONADO E, GALáN-MASCARóS J R,MONRABAL-CAPILLA M,et al. Bistable spin-crossover nanoparticles showing magnetic thermal hysteresis near room temperature [J]. Advanced Materials,2007,19(10):1359-1361.[24] IBRAHIM N M J N,SAID S M,HASNAN M M I M,et al. Optimization of octahedral iron(II) and cobalt(II) spin-crossover metal complex for thermoelectric application [J]. Materials Chemistry and Physics,2019,232:169-179.[25] DURAND P,PILLET S,BENDEIF E,et al. Room temperature bistability with wide thermal hysteresis in a spin crossover silica nanocomposite [J]. Journal of Materials Chemistry C,2013,1(10):1933-1942.[26] 王玉侠,邱丹,奚赛飞,等. 自旋转换-氧化石墨烯纳米复合材料的制备及磁性 [J]. 无机化学学报,2016,32(11):1965-1972.[27] K?HLER C,RENTSCHLER E. The first 1,3,4-oxadiazole based dinuclear iron(II) complexes showing spin crossover behavior with hysteresis [J]. European Journal Inorganic Chemistry,2016(13/14):1955-1960.[28] HADDAD M S,FEDERER W D,LYNCH M Y,et al. An explanation of unusual properties of spin-crossover ferric complex [J]. Journal of the American Chemical Society,1980,102(4):1468-1470.[29] GIMéNEZ-MARQUéS M, GARCIA-SANZ DE LARREA M L,CORONADO E. Unravelling the chemical design of spin-crossover nanoparticles based on iron(II)-triazole coordination polymers:towards a control of the spin transition [J]. Journal of Materials Chemistry C,2015,3(30):7946-7953.[30] ZHAO T,CUIGNET L, DIRTU M M, et al. Water effect on the spin-transition behavior of Fe(II)1,2,4-triazole 1D chains embedded in pores of MCM-41 [J]. Journal of Materials Chemistry C,2015, 3(30):7802-7812.[31] DIACONU A, LUPU S L, RUSU I, et al. Piezoresistive effect in the [Fe(Htrz)2(trz)](BF4) spin crossover complex [J]. Journal of Physical Chemistry Letters,2017,8(13):3147-3151.[32] GROSJEAN A, DARO N, PECHEV S, et al. Crystallinity and microstructural versatility in the spin-crossover polymeric material [Fe(Htrz)2(trz)](BF4) [J]. European Journal of Inorganic Chemistry,2018,2018(3):429-434.[33] NIETO-CASTRO D, G ARCéS-PINEDA F A,MONEO-CORCUERA A,et al. Effect of mechanochemical recrystallization on the thermal hysteresis of 1D FeII-triazole spin crossover polymers [J]. Inorganic Chemistry,2020,59(12):7953-7959.[34] SHALABAEVA V,RIDIER K,RAT S,et al. Room temperature current modulation in large area electronic junctions of spin crossover thin films [J]. Applied Physics Letters,2018,112(1):013301.[35] LEFTER C,RAT S, COSTA J S, et al. Current switching coupled to molecular spin-states in large-area junctions [J]. Advanced Materials,2016,28(34):7508-7514.[36] WANG J Y,LUO Y H,XING F H, et al. Build 3D nanoparticles by using ultrathin 2D MOFs nanosheets for NIR light-triggered molecular switching [J]. ACS Applied Materials & Interfaces,DOI:10.1021/acsami.0c00324.[37] KUROIWA K, SHIBATA T, SASAKI S, et al. Supramolecular control of spin-crossover phenomena in lipophilic Fe(II)-1,2,4-triazole complexes [J]. Journal of Polymer Science:Part A:Polymer Chemistry,2010,44(17):5192-5202.[38] MATSUDA M, TAJIMA H. Thin film of a spin crossover complex [Fe(dpp)2](BF4)2 [J]. Chemistry Letters,2007,36(6):700-701.[39] COBO S, MOLNáR G, REAL J A, et al. Multilayer sequential assembly of thin films that display room-temperature spin crossover with hysteresis [J]. Angewandte Chemie International Edition,2006,45(35):5789-5789.[40] ROTARU A, DUGAY J, TAN R P, et al. Nano-electromanipulation of spin crossover nanorods: towards switchable nanoelectronic devices [J]. Advanced Materials,2013,25(12):1745-1749.[41] BOUSSEKSOU A,MOLNáR G,SALMON L,et al. Molecular spin crossover phenomenon: recent achievements and prospects [J]. Chemical Society Reviews,2011,40(6):3313-3335.[42] GURAL’SKIY I A, QUINTERO C M,COSTA J S,et al. Spin crossover composite materials for electrothermomechanical actuators [J]. Journal of Materials Chemistry C,2014,2(16):2949-2955.[43] SHEPHERD H J, GURAL’SKIY I A,QUINTERO C M,et al. Molecular actuators driven by cooperative spin-state switching [J]. Nature Communications,2013(4):1-9.[44] HOLOVCHENKO A, DUGAY J, GIMéNEZ-MARQUéS M,et al. Near room-temperature memory devices based on hybrid spin-crossover@SiO2 nanoparticles coupled to single-layer graphene nanoelectrodes [J]. Advanced Materials,2016,28(33):7228-7233.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2020-10-28基金项目:湖北省自然科学基金(2019CFC862);发光材料与器件国家重点实验室开放基金(2019-skllmd-14)作者简介:贺琦祺,硕士研究生。E-mail: 1223065127@qq.com*通讯作者:石胜伟,博士,特聘教授。E-mail: shisw@wit.edu.cn引文格式:贺琦祺,刘天一,吴远帅,等. 自旋交叉配合物[Fe(Htrz)2(trz)](BF4)的研究进展[J]. 武汉工程大学学报,2021,43(1):21-29.
更新日期/Last Update: 2021-02-07