|本期目录/Table of Contents|

[1]李婷婷,王嫦嫦,白向茹,等.等温核酸放大技术在重金属检测方面的应用[J].武汉工程大学学报,2021,43(01):38-44.[doi:10.19843/j.cnki.CN42-1779/TQ.202010009]
 LI Tingting,WANG Changchang,BAI Xiangru,et al.Application of Isothermal Nucleic Acid Amplification Technology in Heavy Metal Detection[J].Journal of Wuhan Institute of Technology,2021,43(01):38-44.[doi:10.19843/j.cnki.CN42-1779/TQ.202010009]
点击复制

等温核酸放大技术在重金属检测方面的应用(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年01期
页码:
38-44
栏目:
化学与化学工程
出版日期:
2021-02-28

文章信息/Info

Title:
Application of Isothermal Nucleic Acid Amplification Technology in Heavy Metal Detection
文章编号:
1674 -2869(2021)01 -0038 -07
作者:
李婷婷王嫦嫦白向茹王利华夏 定战艺芳姚 琪郑思洁*
武汉市农业科学院环境与安全研究所,湖北 武汉 430065
Author(s):
LI Tingting WANG Changchang BAI Xiangru WANG Lihua XIA Ding ZHAN Yifang YAO Qi ZHENG Sijie*
Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan 430065,China
关键词:
等温核酸放大技术重金属检测杂交链式反应链置换扩增技术滚环扩增技术催化发夹组装技术
Keywords:
isothermal nucleic acid amplification technologyheavy metal detection hybridization chain reaction strand displacement amplification rolling circle amplification catalytic hairpin assembly
分类号:
TQ014
DOI:
10.19843/j.cnki.CN42-1779/TQ.202010009
文献标志码:
A
摘要:
等温核酸放大技术是一种可以实现重金属污染物痕量分析的高灵敏性检测方法,在分析检测中有着广泛且重要的作用。本文综述了几种不同的等温核酸放大技术及其在重金属检测方面的应用,阐述分析了各方法的检测原理,为之后建立更加灵敏、快速、准确的检测方法提供了参考。虽然等温核酸放大技术目前主要停留在实验室阶段,并且检测目标有限,但是由于该技术的高灵敏性、特异性以及与其他学科紧密的联系性,具有潜在的应用前景。
Abstract:
The isothermal nucleic acid amplification technology is a highly sensitive detection method about the target trace heavy metal, and plays an important role in the analysis and detection. In this paper, several kinds of isothermal nucleic acid amplification technologies and their application in heavy metal detection were introduced, and the detection principle of each method was analyzed, which provided a reference for the establishment of more sensitive, rapid and accurate detection methods. At present, isothermal nucleic acid amplification technology mainly stays in the laboratory stage, and the detection target is limited, but because of its high sensitivity, specificity and close connection with other disciplines, it still has the potential practical application prospects.

参考文献/References:

[1] 邹敏,段建坤,周毅,等.食品中重金属检测及样品前处理方法综述[J].现代食品,2019(6):167-171.[2] 吕彩云. 重金属检测方法研究综述[J].资源开发与市场,2008(10):25-28.[3] ZHAN S S,WU Y G,WANG L M,et al.A mini-review on functional nucleic acids-based heavy metal ion detection[J].Biosensors and Bioelectronics,2016,86:353-368.[4] 刘玉. 基于纳米金标记和杂交链式反应的高灵敏生物分析方法研究[D]. 成都:成都理工大学,2019. [5] YIN H H, HUANG X, MA W, et al. Ligation chain reaction based gold nanoparticle assembly for ultrasensitive DNA detection[J]. Biosensors and Bioelectronics,2014,52:8-12.[6] WANG C K, DONG X Y, LIU Q, et al. Label-free colorimetric aptasensor for sensitive detection of ochratoxin A utilizing hybridization chain reaction[J].Analytica Chimica Acta,2015,860:83-88.[7] ORBAYINAH S, HERMAWAN A, SISMINDARI S,et al. Detection of pork in meatballs using probe TaqMan Real-time Polymerase Chain Reaction[J].Food Research,2020,4(5):1563-1568.[8] LIU Y X,CHEN P,YUAN S,et al.A novel method for sensitive detection of Escherichia coli O157:H7 based on an aptamer and hybridization chain reaction[J]. Analytical Methods,2020,12(9762):3734-3740.[9] SHI X M,FAN G C,TANG X,et al.Ultrasensitive photoelectrochemical biosensor for the detection of HTLV I DNA:a cascade signal amplification strategy integrating λ exonuclease aided target recycling with hybridization chain reaction and enzyme catalysis[J].Biosensors and Bioelectronics,2018,109:190 -196.[10] LI T T,ZOU L,ZHANG J,et al.Non-invasive diagnosis of bladder cancer by detecting telomerase activity in human urine using hybridization chain reaction and dynamic light scattering[J].Analytica Chimica Acta,2019,1065:90-97.[11] ZHANG M R,LI F Q, GONG J,et al. Development and evaluation of a real-time polymerase chain reaction for fast diagnosis of sporotrichosis caused by Sporothrix globosa[J].Medical Mycology: official Publication of the International Society for Human and Animal Mycology,2020,58(1):61-65.[12] LIU S,LENG X Q, WANG X, et al.Enzyme free colorimetric assay for mercury(II)using DNA conjugated to gold nanoparticles and strand displacement amplification[J].Microchimica Acta,2017,184(7): 1969-1976.[13] LI C L, ZHANG Y Q, CAI Q Q,et al.A dendritically amplified fluorescent signal probe on SiO2 microspheres for the ultrasensitive detection of mercury ions[J]. Analyst,2020,145:2805-2810.[14] LI Y B, XIE L,YUAN J M, et al.A sensitive fluorometric sensor for Ag+ based on the hybridization chain reaction coupled with a glucose oxidase dual-signal amplification strategy[J].RSC Advances,2020,10(44):26239-26245.[15] LI X L, GUO J, ZHAI Q, et al.Ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon mediated circular strand displacement polymerization and hyperbranched rolling circle amplific ation[J].Analytica Chimica Acta,2016,934:52-58.[16] DENG X L,WANG C,GAO Y,et al.Applying strand displacement amplification to quantum dots based fluorescent lateral flow assay strips for HIV DNA detecti on[J].Biosensors and Bioelectronics,2018,105:211-217.[17] XU H,WU D,ZHANG Y F,et al.RCA enhanced multifunctional molecule beacon based strand displacement amplification for sensitive microRNA detection[J].Sensors and Actuators B: Chemical,2018,258:470-477.[18] CHEN H, WU S Y, DONG F, et al.A novel chemiluminescence immunoassay for highly sensitive and specific detection of protein using rolling circle amplification and the multiplex binding system[J].Sensors and Actuators B: Chemical,2015,221:328-333.[19] ZHAO J,HU S S,CAO Y,et al.Electrochemical detection of protein based on hybridization chain reaction assisted formation of copper nanoparticles[J].Biosensors and Bioelectronics,2015,66:327-331.[20] ONO A,TOGASHI H. Highly selective oligonucleotide- based sensor for mercury(II) in aqueous solutions[J].Angewandte Chemie Inernational Edition in English,2004,43(33):4300-4302.[21] PAN T,UHLENBECK O C.A small metalloribozyme with a two-step mechanism[J].Nature,1992,358(6387):560-563.[22] WANG H, OU L M L, SOU Y, et al.Computer-readable DNAzyme assay on disc for ppb-level lead detection[J].Analytical Chemistry,2011,83(5):1557-1563.[23] DIRKS R M, PIERCE N A.Triggered amplification by hybridization chain reaction[J].Proceedings of the National Academy of Sciences,2004,101(43):15275-15278.[24] CAI W,XIE S B,ZHANG J,et al. An electrochemical impedance biosensor for Hg2+ detection based on DNA hydrogel by coupling with DNAzyme-assisted target recycling and hybridization chain reaction[J].Biosensors and Bioelectronics,2017, 98:466-472.[25] HONG M Q, WANG M Y, WANG J, et al.Ultrasensitive and selective electrochemical biosensor for detection of mercury (II)ions by nicking endonuclease-assisted target recycling and hybridization chain reaction signal amplification [J].Biosensors and Bioelectronics,2017,94:19-23.[26] HAO Y L, GUO Q Q, WU H Y,et al.Amplified colorimetric detection of mercuric ions through autonomous assembly of G-quadruplex DNAzyme nanowires[J].Biosensors and Bioelectronics,2014,52:261-264.[27] TANG S R, TTONG P,WANG M L,et al.A novel colorimetric sensor for Hg2+ based on hybridization chain reaction and silver nanowire amplification[J].Chemical Communications,2015,51(81):15043-15046.[28] HUANG J H,GAO X, JIA J J, et al.Graphene oxide-based amplified fluorescent biosensor for Hg2+ detection through hybridization chain reactions[J].Analytical Chemistry,2014,86(6):3209-3215.[29] SUI N, WANG K, WANG L N, et al.Ultrasensitive detection of Hg(II) through metal-enhanced fluorescence and hybridization chain reaction[J].Sensors and Actuators B:Chemical,2017,245:568-573.[30] ZHUANG J Y,FU L B,XU M D,et al.DNAzyme-based magneto-controlled electronic switch for picomolar detection of lead (II) coupling with DNA-based hybridization chain reaction[J].Biosensors and Bioelectronics,2013,45:52-57.[31] ZHANG Y L,LI H Y,CHEN M,et al.Ultrasensitive electrochemical biosensor for silver ion based on magnetic nanoparticles labeling with hybridization chain reaction amplification strategy[J].Sensors and Actuators B:Chemical,2017, 249:431-438.[32] GU H D,YANG Y Y,CHEN F,et al.Electrochemical detection of arsenic contamination based on hybridization chain reaction and RecJ(f)exonuclease-mediated amplification[J].Chemical Engineering Journal,2018,353:305-310.[33] WALKER G T, LITTLE M C,NADEAU J G,et al.Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system[J].Proceedings of the National Academy of Sciences,1992,89(1):392-396.[34] LIU S, LENG X Q, WANG X, et al.Enzyme-free colorimetric assay for mercury(II) using DNA conjugated to gold nanoparticles and strand displacement amplification[J].Microchimica Acta,2017,184(7):1969-1976.[35] XIE S B, YING T, DIAN Y T.Highly sensitive electrochemical detection of mercuric ions based on sequential nucleic acid amplification and guanine nanowire formation[J].Analytical Methods,2017,37:5478-5483.[36] LI W Y, YANG Y,CHEN J,et al.Detection of lead(II)ions with a DNAzyme and isothermal strand displacement signal amplification[J].Biosensors and Bioelectronics,2014,53(1):245-249.?[37] CHEN X L,WANG X F,LU Z,et al.Ultra-sensitive detection of Pb2+ based on DNAzymes coupling with multi-cycle strand displacement amplification(M-SDA)and nano-graphene oxide[J].Sensors and Actuators B Chemical,2020,311:127898.[38] FIRE A,XU S Q.Rolling replication of short DNA circles[J].Proceedings of the National Academy of Sciences,1995,92(10):4641-4645.[39] LIZARDI P M,HUANG X,ZHU Z,et al.Mutation detection and single-molecule counting using isothermal rolling-circle amplification[J].Nature genetics,1998,19(3):225.[40] TANG S R, TONG P, LI H, et al.Ultrasensitive electrochemical detection of Pb2+ based on rolling circle amplification and quantum dotstagging[J].Biosensors and Bioelectronics,2013,42:608-611.[41] Lü J,XIE S B,CAI W,et al.Highly effective target converting strategy for ultrasensitive electrochemical assay of Hg2+[J].Analyst,2017,142(24):4708-4714.[42] TANG D P, XIA B Y, TANG Y,et al.Metal-ion-induced DNAzyme on magnetic beads for detection of lead(II) by using rolling circle amplification,glucose oxidase,and readout of pH changes[J].Microchimica Acta,2019,186(5):318 - 316.[43] YIN P, CHOI H M T, CALVERT C R, et al.Programming biomolecular self-assembly pathways[J].Nature,2008,451(7176):318-322[44] ZHAO J M, JING P, XUE S Y, et al.Dendritic structure DNA for specific metal ion biosensor based on catalytic hairpin assembly and a sensitive synergistic amplification strategy[J].Biosensors and Bioelectronics,2017,87:157-163.[45] JIN H,ZHANG D,LIU Y,et al.An electrochemical aptasensor for lead ion detection based on catalytic hairpin assembly and porous carbon supported platinum as signal amplification[J].RSC Advances,2020,10:6647 - 6653.[46] YUN W, XIONG W, WU H, et al.Graphene oxide-based fluorescent “turn-on” strategy for Hg2+ detection by using catalytic hairpin assembly for amplification[J].Sensors and Actuators B:Chemical,2017,249:493-498.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2020-10-12基金项目:湖北省自然科学基金青年基金(2019CFB408);湖北省高价值知识产权培育工程(0710) 作者简介:李婷婷,硕士。E-mail:1159908626@qq.com *通讯作者:郑思洁,硕士。E-mail:zhengsijie1994@163.com引文格式:李婷婷,王嫦嫦,白向茹,等. 等温核酸放大技术在重金属检测方面的应用[J]. 武汉工程大学学报,2021,43(1):38-44.
更新日期/Last Update: 2021-02-07