|本期目录/Table of Contents|

[1]戴 沛,朱丽华*.基于烷基醇/酸的超分子溶剂及其在分析前处理中的应用[J].武汉工程大学学报,2021,43(03):237-247.[doi:10.19843/j.cnki.CN42-1779/TQ.202103009]
 DAI Pei,ZHU Lihua*.Alkyl Alcohol/Acid-Based Supramolecular Solvents and Their Applications in Analytical Pretreatment[J].Journal of Wuhan Institute of Technology,2021,43(03):237-247.[doi:10.19843/j.cnki.CN42-1779/TQ.202103009]
点击复制

基于烷基醇/酸的超分子溶剂及其在分析前处理中的应用(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年03期
页码:
237-247
栏目:
化学与化学工程
出版日期:
2021-06-30

文章信息/Info

Title:
Alkyl Alcohol/Acid-Based Supramolecular Solvents and Their Applications in Analytical Pretreatment
文章编号:
1674 - 2869(2021)03 - 0237 - 11
作者:
戴 沛朱丽华*
华中科技大学化学与化工学院,湖北 武汉 430074
Author(s):
DAI Pei ZHU Lihua*
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
关键词:
超分子溶剂反相胶束囊泡液液萃取样品前处理
Keywords:
supramolecular solvents reversed micelle vesicles liquid-liquid extraction samples pretreatment
分类号:
O658
DOI:
10.19843/j.cnki.CN42-1779/TQ.202103009
文献标志码:
A
摘要:
基于长链烷基醇/酸的超分子溶剂(SUPRASs)由于其两亲物质含量高、萃取分离条件温和,近年来被广泛用于高效萃取及富集宽极性范围内的目标分析物,首先介绍了SUPRASs的基本性质及其组成单体的比较,综述了基于长链烷基醇/酸SUPRASs的萃取机理和典型应用;然后,对超分子溶剂萃取技术与其他样品前处理方法的联用进行了归纳总结,并对未来的研究方向进行了展望。然而,超分子溶剂萃取相仍存在回收难、杂质多的问题,通过将超分子溶剂萃取技术与其他前处理方法相结合,可有效解决上述问题,未来有望作为分子指纹光谱的前处理手段广泛应用到快检领域。
Abstract:
Due to the high content of amphiphiles and mild conditions to separate, the alkyl alcohol/acid-based supramolecular solvents (SUPRASs) have been widely used to efficiently extract and preconcentrate target analytes in a wide polarity range in recent years. In this paper, we firstly introduced the basic properties of various aggregates and the comparison of their monomer, and summarized the extraction mechanism and typical application of alcohol/acid-based SUPRASs. Then, the combination of SUPRASs with other pretreatment methods was reviewed and the future research direction was prospected. The combination of SUPRASs with other pretreatment methods can make up its deficiencies in collection and sample purification. Moreover, by combining with molecular fingerprint spectrum, the SUPRASs are expected to be widely used in the field of rapid detection in the future.

参考文献/References:

[1] YAZDI A S. Surfactant-based extraction methods[J]. Trends in Analytical Chemistry, 2011, 30(6):918-929.

[2] MORADI M, YAMINI Y. Surfactant roles in modern sample preparation techniques: a review[J]. Journal of Separation Science, 2012, 35(18):2319-2340.
[3] RUIZ F J, RUBIO S, PéREZ-BENDITO D. Tetrabutylammonium-induced coacervation in vesicular solutions of alkyl carboxylic acids for the extraction of organic compounds[J]. Analytical Chemistry, 2006, 78(20):7229-7239.?
[4] RUIZ F J, RUBIO S, PéREZ-BENDITO D. Water-induced coacervation of alkyl carboxylic acid reverse micelles: phenomenon description and potential for the extraction of organic compounds[J]. Analytical Chemistry, 2007, 79(19):7473-7484.
[5] BALLESTEROS-GóMEZ A, RUBIO S, PéREZ-BENDITO D. Determination of priority carcinogenic polycyclic aromatic hydrocarbons in wastewater and surface water by coacervative extraction and liquid chromatography-fluorimetry[J]. Journal of Chromatography A, 2008, 1203(2):168-176.
[6] BALLESTEROS-GóMEZ A, RUBIO S, PéREZ-BENDITO D. Potential of supramolecular solvents for the extraction of contaminants in liquid foods[J]. Journal of Chromatography A, 2009, 1216(3):530-539.
[7] BALLESTEROS-GóMEZ A,SICILIA M D, RUBIO S. Supramolecular solvents in the extraction of organic compounds. a review[J]. Analytica Chimica Acta, 2010, 677(2):108-130.
[8] CARASEK E, BERNARDI G, MORELLI D, et al. Sustainable green solvents for microextraction techniques: recent developments and applications[J]. Journal of Chromatography A, 2021, 1640:461944.
[9] SEEBUNRUENG K, DEJCHAIWATANA C, SAN-TALADCHAIYAKIT Y, et al. Development of supramolecular solvent based microextraction prior to high performance liquid chromatography for simultaneous determination of phenols in environmental water[J]. RSC Advances, 2017, 7(79):50143-50149.
[10] MORAL A,SICILIA M D, RUBIO S. Supramolecular solvent-based extraction of benzimidazolic fungicides from natural waters prior to their liquid chromatographic/fluorimetric determination[J]. Journal of Chromatography A, 2009, 1216(18):3740-3745.
[11] MPUPA A, MASHILE G P, NOMNGONGO P N. Vortex assisted-supramolecular solvent based microextraction coupled with spectrophotometric determination of triclosan in environmental water samples[J]. Open Chemistry, 2017, 15(1):255-262.
[12] LIANG M, XIAN Y P, WANG B, et al. High throughput analysis of 21 perfluorinated compounds in drinking water, tap water, river water and plant effluent from southern China by supramolecular solvents-based microextraction coupled with HPLC-Orbitrap HRMS[J]. Environmental Pollution, 2020, 263:114389.
[13] LI G P, Lü Y G, CHEN M, et al. Post-chromatographic dicationic ionic liquid-based charge complexation for highly sensitive analysis of anionic compounds by ultra-high-performance supercritical fluid chromatography coupled with electrospray ionization mass spectrometry[J]. Analytical Chemistry, 2021, 93(3): 1771-1778.
[14] YONNY M E, BALLESTEROS-GóMEZ A, ADAMO M L T, et al. Supramolecular solvent-based high-throughput sample treatment for monitoring phytohormones in plant tissues[J]. Talanta, 2020, 219:121249.
[15] OLIVEIRAA L L G, KUDOA M V F, LOPESA C T, et al. Development and multivariate optimization of nanostructured supramolecular liquid-liquid microextraction validated method for highly sensitive determination of methyl parathion in water samples[J]. Journal of Molecular Liquids, 2020, 308:113026.[16] SCHEEL G L, TARLEY C R T. Simultaneous microextraction of carbendazim, fipronil and picoxystrobin in naturally and artificial occurring water bodies by water-induced supramolecular solvent and determination by HPLC-DAD[J]. Journal of Molecular Liquids, 2020, 297:111897.
[17] FALSAF Z, RAOFIE F, ARIYA P A. Supercritical fluid extraction followed by supramolecular solvent microextraction as a fast and efficient preconcentration method for determination of polycyclic aromatic hydrocarbons in apple peels[J]. Journal of Separation Science, 2020, 43:1154-1163.
[18] ACCIONI F, CABALLERO-CASERO N, GARCíA-GóMEZ D, et al. Restricted access volatile supramolecular solvents for single-step extraction/cleanup of benzimidazole anthelmintic drugs in milk prior to LC-MS/MS[J]. Journal of Agricultural and Food Chemistry, 2019, 67(1):520-530.
[19] LARA A B, CABALLO C, SICILIA M D, et al. Quick and sensitive enantioselective determination of permethrin in fruits and vegetables by combining supramolecular solvents and chiral liquid chromatography-tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2020, 68(33):9014-9023.
[20] OLIVEIRA F M, SCHEEL G L, AUGUSTI R, et al. Supramolecular microextraction combined with paper spray ionization mass spectrometry for sensitive determination of tricyclic antidepressants in urine[J]. Analytica Chimica Acta, 2020, 1106:52-60.
[21] GISSAWONG N, BOONCHIANGMA S, MUKD-ASAI S, et al. Vesicular supramolecular solvent-based microextraction followed by high performance liquid chromatographic analysis of tetracyclines[J]. Talanta, 2019, 200:203-211.
[22] LARA A B, CABALLO C, SICILIA M D, et al. Enantiomer-specific determination of hexabromocyclododecane in fish by supramolecular solvent-based single-step sample treatment and liquid chromatography-tandem mass spectrometry[J]. Analytica Chimica Acta, 2012, 752(21):62-68.
[23] CABALLO C, SICILIA M D, RUBIO S. Stereoselective quantitation of mecoprop and dichlorprop in natural waters by supramolecular solvent-based microextraction, chiral liquid chromatography and tandem mass spectrometry[J]. Analytica Chimica Acta, 2013, 761(761):102-108.
[24] LUQUE N, BALLESTEROS-GóMEZ A, VAN L S, et al. A simple and rapid extraction method for sensitive determination of perfluoroalkyl substances in blood serum suitable for exposure evaluation[J]. Journal of Chromatography A, 2012, 1235(8):84-91.
[25] BALLESTEROS-GóMEZ A,RUBIO S. Environment- responsive alkanol-based supramolecular solvents: characterization and potential as restricted access property and mixed-mode extractants[J]. Analytical Chemistry, 2012, 84(1):342-349.
[26] ALTUNAY N, ELIK A. A green and efficient vortex-assisted liquid-phase microextraction based on supramolecular solvent for UV-VIS determination of nitrite in processed meat and chicken products[J]. Food Chemistry, 2020, 332:127395.
[27] KEDDAR M N, BALLESTEROS-GóMEZ A, AMIALI M, et al. Efficient extraction of hydrophilic and lipophilic antioxidants from microalgae with supramolecular solvents[J]. Separation and Purification Technology, 2020, 251:117327.
[28] ZHAO W T, ZHAO J Z, ZHAO H Q, et al. Supramolecular solvent-based vortex-mixed microextraction: determination of chiral triazole fungicide in beer samples[J]. Chirality, 2018, 30:302-309.
[29] ALATTI-DORADO J á, CABALLERO-CASERO N, SICILIA M D S, et al. The use of a restricted access volatile supramolecular solvent for the LC/MS-MS assay of bisphenol A in urine with a significant reduction of phospholipid-based matrix effects[J]. Analytica Chimica Acta, 2017, 950:71-79.
[30] CABALLERO-CASERO N, MIHRETU L D, RUBIO S. Interference free method for determination of benzodiazepines in urine based on restricted access supramolecular solvents and LC-MS/MS[J]. Journal of Analytical Toxicology, 2021, https://doi.org/10.1093/jat/bkab023.
[31] GONZáLEZ-RUBIO S, GARCíA-GóMEZ D, BALLESTEROS-GóMEZ A, et al. A new sample treatment strategy based on simultaneous supramolecular solvent and dispersive solid-phase extraction for the determination of ionophore coccidiostats in all legislated foodstuffs[J]. Food Chemistry, 2020, 326: 126987.[32] LóPEZ-JIMéNEZ F J, ROSALES-MARCANO M, RUBIO S. Restricted access property supramolecular solvents for combined microextraction of endocrine disruptors in sediment and sample cleanup prior to their quantification by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2013, 1303(6):1-8.
[33] FEIZI N, YAMINI Y, MORADI M, et al. A new generation of nano-structured supramolecular solvents based on propanol/gemini surfactant for liquid phase microextraction[J]. Analytica Chimica Acta, 2016, 953:1-9.?
[34] REZAEI F, YAMINI Y, MORADI M. A comparison between emulsification of reverse micelle-based supramolecular solvent and solidification of vesicle-based supramolecular solvent for the microextraction of triazines[J]. Journal of Chromatography A, 2014, 1327:155-159.?
[35] GARCíA-FONSECA S, BALLESTEROS-GóMEZ A, RUBIO S, et al. Coacervative extraction of ochratoxin A in wines prior to liquid chromatography/fluorescence determination[J]. Analytica Chimica Acta, 2008, 617(1/2):3-10.
[36] GARCíA-FONSECA S, BALLESTEROS-GóMEZ A, RUBIO S, et al. Supramolecular solvent-based microextraction of ochratoxin A in raw wheat prior to liquid chromatography-fluorescence determination[J]. Journal of Chromatography A, 2010, 1217(16):2376-2382.
[37] CABALLERO-CASERO N,GARCíA-FONSECA S, RUBIO S. Vesicular aggregate-based solventless microextraction of ochratoxin A in dried vine fruits prior to liquid chromatography and fluorescence detection[J]. Talanta, 2012, 89(2):377-382.
[38] CABALLERO-CASERO N, ?ABUK H, MAR-TíNEZ-SAGARRA G, et al. Nanostructured alkyl carboxylic acid-based restricted access solvents: application to the combined microextraction and cleanup of polycyclic aromatic hydrocarbons in mosses[J]. Analytica Chimica Acta, 2015, 890(4):124-133.
[39] LóPEZ-JIMéNEZ F J, BALLESTEROS-GóMEZ A, RUBIO S. Determination of polycyclic aromatic hydrocarbons (PAH4) in food by vesicular supramolecular solvent-based microextraction and LC-fluorescence detection[J]. Food Chemistry, 2014, 143:341-347.
[40] ALABI A, CABALLERO-CASERO N, RUBIO S. Quick and simple sample treatment for multiresidue analysis of bisphenols, bisphenol diglycidyl ethers and their derivatives in canned food prior to liquid chromatography and fluorescence detection[J]. Journal of Chromatography A, 2014, 1336(7):23-33.
[41] MORADI M, YAMINI Y. Application of vesicular coacervate phase for microextraction based on solidification of floating drop[J]. Journal of Chromatography A, 2012, 1229(6):30-37.
[42] EZODDIN M, MAJIDI B, ABDI K. Ultrasound-assisted supramolecular dispersive liquid-liquid microextraction based on solidification of floating organic drops for preconcentration of palladium in water and road dust samples[J]. Journal of Molecular Liquids, 2015, 209:515-519.
[43] KASHANAKI R, EBRAHIMZADEH H, MORADI M. Metal-organic framework based micro solid phase extraction coupled with supramolecular solvent microextraction to determine copper in water and food samples[J]. New Journal of Chemistry, 2018, 42:5806-5813.
[44] REZAEI F, YAMINI Y, MORADI M, et al. Solid phase extraction as a cleanup step before microextraction of diclofenac and mefenamic acid using nanostructured solvent[J]. Talanta, 2013, 105(4):173-178.?
[45] ASIABI H, YAMINI Y, MORADI M. Determination of sulfonylurea herbicides in soil samples via supercritical fluid extraction followed by nanostructured supramolecular solvent microextraction[J]. Journal of Supercritical Fluids, 2013, 84(5):20-28.
[46] MORADI M, YAMINI Y, EBRAHIMPOUR B. Emulsion-based liquid-phase microextraction: a review[J]. Journal of the Iranian Chemical Society, 2014, 11(4):1087-1101.
[47] EZODDIN M, ADLNASAB L, KAVEH A, et al. Ultrasonically formation of supramolecular based ultrasound energy assisted solidification of floating organic drop microextraction for preconcentration of methadone in human plasma and saliva samples prior to gas chromatography-mass spectrometry[J]. Ultrasonics Sonochemistry, 2019, 50:182-187.
[48] MORADI M, YAMINI Y, REZAEI F, et al. Development of a new and environment friendly hollow fiber-supported liquid phase microextraction using vesicular aggregate-based supramolecular solvent[J]. Analyst, 2012, 137(15):3549-3557.
[49] REZAEI F, YAMINI Y, MORADI M, et al. Supramolecular solvent-based hollow fiber liquid phase microextraction of benzodiazepines[J]. Analytica Chimica Acta, 2013, 804:135-142.
[50] SHI Z G, LEE H K. Dispersive Liquid-liquid microextraction coupled with dispersive μ-solid-phase extraction for the fast determination of polycyclic aromatic hydrocarbons in environmental water samples[J]. Analytical Chemistry, 2010, 82(4):1540-1545.
[51] ZOHRABI P, SHAMSIPUR M, HASHEMI M,et al. Liquid-phase microextraction of organophosphorus pesticides using supramolecular solvent as a carrier for ferrofluid[J]. Talanta, 2016, 160:340-346.
[52] YANG D Z, LI X L, MENG D L, et al. Supramolecular solvents combined with layered double hydroxide-coated magnetic nanoparticles for extraction of bisphenols and 4-tert-octylphenol from fruit juices[J]. Food Chemistry, 2017, 237:870-876.
[53] SAFARI M, YAMINI Y, TAHMASEBI E, et al. Magnetic nanoparticle assisted supramolecular solvent extraction of triazine herbicides prior to their determination by HPLC with UV detection[J]. Microchimica Acta, 2016, 183(1):203-210.
[54] LI X, HUANG A Q, LIAO X Y, et al. Restricted access supramolecular solvent based magnetic solvent bar liquid-phase microextraction for determination of non-steroidal anti-inflammatory drugs in human serum coupled with high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2020, 1634:461700.
[55] GOPAL K, AL DEEB I, RAAOV M, et al. Supramolecular solvent combined with dispersive solid phase extraction based magnetic silicone surfactant activated charcoal adsorbent for extraction of phenolic compounds from industrial wastewater[J]. Microchemical Journal, 2020, 157:105110.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-03-08基金项目:国家自然科学基金(22076052)作者简介:戴 沛,博士研究生。E-mail:peidai94@hust.edu.cn*通讯作者:朱丽华,博士,教授,博士研究生导师。E-mail:lhzhu63@hust.edu.cn引文格式:戴沛,朱丽华. 基于烷基醇/酸的超分子溶剂及其在分析前处理中的应用[J]. 武汉工程大学学报,2021,43(3):237-247.
更新日期/Last Update: 2021-06-23