|本期目录/Table of Contents|

[1]王若冲,陈振宇,李厚燊,等.基于MXene气凝胶的微型超级电容器[J].武汉工程大学学报,2021,43(03):288-293.[doi:10.19843/j.cnki.CN42-1779/TQ.202011026]
 WANG Ruochong,CHEN Zhenyu,LI Houshen,et al.Micro-Supercapacitor Based on MXene Aerogel[J].Journal of Wuhan Institute of Technology,2021,43(03):288-293.[doi:10.19843/j.cnki.CN42-1779/TQ.202011026]
点击复制

基于MXene气凝胶的微型超级电容器(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年03期
页码:
288-293
栏目:
材料科学与工程
出版日期:
2021-06-30

文章信息/Info

Title:
Micro-Supercapacitor Based on MXene Aerogel
文章编号:
1674 - 2869(2021)03 - 0288 - 06
作者:
王若冲陈振宇李厚燊孙义民*
等离子体化学与新材料湖北省重点实验室(武汉工程大学),湖北 武汉 430205
Author(s):
WANG RuochongCHEN ZhenyuLI HoushenSUN Yimin*
Hubei key Laboratory of Plasma Chemistry and Advanced Materials(Wuhan Institute of Technology),Wuhan 430205, China
关键词:
MXene气凝胶微型超级电容器全固态柔性器件
Keywords:
MXene aerogel micro-supercapacitor all-solid-state flexible device
分类号:
TM53
DOI:
10.19843/j.cnki.CN42-1779/TQ.202011026
文献标志码:
A
摘要:
刻蚀Ti3AlC2 MAX相陶瓷粉末得到单层和少层的Ti3C2Tx MXene纳米片,通过低温(-50 ℃)冷冻干燥,制备了具有多孔结构的Ti3C2Tx气凝胶(Ti3C2Tx aerogel)。利用光刻胶技术,在滤纸上刻出叉指状电极阵列,然后以Ti3C2Tx气凝胶为电极活性物质构建了全固态微型超级电容器(mSC)。电化学测试表明,当电流密度为0.5 mA/cm2时,基于Ti3C2Tx气凝胶的微型超级电容器的面积电容达到77.90 mF/cm2,是相同条件下纯Ti3C2Tx MXene微型超级电容器的4.17倍。功率密度和能量密度分别为0.29 W/cm3和9.89 (mW·h)/cm3,循环1 000次电容保持率为91.6%。因此,该高性能的微型超级电容器在柔性微电子器件中显示出巨大的应用潜力。
Abstract:
Single-and few-layer Ti3C2Tx MXene nanosheets were prepared by etching Ti3AlC2 MAX phase ceramic powder. And Ti3C2Tx aerogel with porous structure was obtained via freeze-drying Ti3C2Tx MXene nanosheets at a low temperature (-50 ℃). With the aid of photoresist technology,an interdigitated electrode array was carved on filter paper,and then an all-solid-state micro-supercapacitor (mSC) was constructed using Ti3C2Tx aerogel as the electrode active material. Electrochemical tests show that the area capacitance of the Ti3C2Tx aerogel based micro-supercapacitor reaches 77.9 mF/cm2 at the current density of 0.5 mA/cm2,which is 4.17 times higher than that of the pure Ti3C2Tx MXene-based micro-supercapacitor under the same conditions. The power density and energy density are 0.29 W/cm3 and 9.89 (mW·h)/cm3,respectively. And the capacitance retention rate is 91.6% after 1 000 cycles. Therefore,this high-performance micro-supercapacitor shows great application potential in flexible microelectronic devices.

参考文献/References:

[1] 李一帆,刘宇航,孙晋蒙,等. 柔性储能器件的电极设计研究进展[J]. 材料导报,2020,34(1):177-186.[2] 孙贺雷,李云飞,易荣华,等. N、B共掺杂MXene复合材料的制备及其电化学性能研究[J]. 储能科学与技术,2019,8(1):130-137.[3] WU Z S, TAN Y Z, ZHENG S H, et al. Bottom-up fabrication of sulfur-doped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance micro-supercapacitors [J]. Journal of the American Chemical Society,2017,139(12):4506-4512.[4] HUANG P,LETHIEN C,PINAUD S,et al. On-chip and freestanding elastic carbon films for micro-supercapacitors [J]. Science,2016,351(6274):691-695.[5] LIN J, ZHANG C G, YAN Z, et al. 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance [J]. Nano Letters,2013,13(1):72-78.[6] SHI X Y, ZHENG S H,WU Z S, et al. Recent advances of graphene-based materials for high-performance and new-concept supercapacitors [J]. Journal of Energy Chemistry,2018,27(1):25-42.[7] ZHENG S H,LI Z L,WU Z S,et al. High packing density unidirectional arrays of vertically aligned graphene with enhanced areal capacitance for high-power micro-supercapacitors [J]. ACS Nano,2017,11(4):4009-4016.[8] XU P,ZENG W,LUO S H,et al. 3D Ni-Co selenide nanorod array grown on carbon fiber paper:towards high-performance flexible supercapacitor electrode with new energy storage mechanism [J]. Electrochimica Acta,2017,241:41-49.[9] YI R H,WANG R C,DUAN J Q,et al. Rational design of hierarchically porous NiCo2O4 and Bi2O3 nanostructure:anchored on 3D nitrogen doped carbonized melamine foam for flexible asymmetric supercapacitor [J]. Electrochimica Acta,2020,338:135845:1-10.[10] LI Z H,SHAO M F,ZHOU L,et al. A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core-shell nanoarrays [J]. Nano Energy,2016,20:294-304.[11] YOO J J,BALAKRISHNAN K,HUANG J S,et al. Ultrathin planar graphene supercapacitors [J]. Nano Letters,2011,11(4):1423-1427.[12] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Advanced Materials,2011,23(37):4248-4253.[13] LI H Y,HOU Y,WANG F X,et al. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated grapheme[J]. Advanced Energy Materials, 2017, 7(4):1601847:1-6.[14] BU F X, ZAGHO M M, IBRAHIM Y, et al. Porous Mxenes:synthesis, structures, and applications[J]. Nano Today,2020,30:100803.[15] WEN Y Y, RUFFORD T E, CHEN X Z, et al. Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors [J]. Nano Energy,2017,38:368-376.[16] HU Q K, WANG H Y, WU Q H, et al. Two-dimensional Sc2C:a reversible and high-capacity hydrogen storage material predicted by first-principles calculations [J]. International Journal of Hydrogen Energy,2014,39(20):10606-10612.[17] ZHAO S, ZHANG H B, LUO J Q, et al. Highly electrically conductive three-dimensional Ti3C2Tx MXene/ reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances [J]. ACS Nano,2018,12(11):11193-11202.[18] MASHTALIR O,LUKATSKAYA M R,ZHAO M Q,et al. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices [J]. Advanced Materials,2015,27(23):3501-3506.[19] SUN Y M, ZENG W, SUN H L, et al. Inorganic/polymer-graphene hybrid gel as versatile electrochemical platform for electrochemical capacitor and biosensor [J]. Carbon,2018,132:589-597.[20] 李能,史祖皓,陈星竹,等. 插层限域工程制备MXene及其复合材料的研究进展[J]. 武汉工程大学学报,2019,41(1):46-54.[21] YANG Y, WU L L,LI L,et al. Additive-free porous assemblies of Ti3C2Tx by freeze-drying for high performance supercapacitors [J]. Chinese Chemical Letters,2020,31(4):1034-1038.[22] YUE Y,LIU N S,MA Y N,et al. Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel [J]. ACS Nano,2018,12(5):4224-4232.[23] JIANG Q, WU C S, WANG Z J, et al. MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit [J]. Nano Energy,2018,45:266-272.[24] YU C Y,GONG Y J,CHEN R Y,et al. A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube scaffold and MXene nanosheets [J]. Small,2018,14(29):1801203:1-7.[25] XIAO X,LI T Q,YANG P H,et al. Fiber-based all-solid-state flexible supercapacitors for self-powered systems [J]. ACS Nano,2012,6(10):9200-9206.[26] SHI P P,LI L,HUA L,et al. Design of amorphous manganese oxide@multiwalled carbon nanotube fiber for robust solid-state supercapacitor [J]. ACS Nano,2017,11(1):444-452.[27] LEE J A, SHIN M K, KIM S H, et al. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices [J]. Nature Communications,2013,4:1970:1-8.[28] SUN G Z,ZHANG X,LIN R Z,et al. Hybrid fibers made of molybdenum disulfide,reduced graphene oxide,and multi-walled carbon nanotubes for solid-state,flexible,asymmetric supercapacitors [J]. Angewandte Chemie,2015,127(15):4734-4739.[29] ZHU C R,YANG P H,CHAO D L,et al. All metal nitrides solid-state asymmetric supercapacitors [J]. Advanced Materials,2015,27(31):4566-4571.[30] XIAO X, PENG X, JIN H Y, et al. Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors[J]. Advanced Materials,2013,25(36):5091-5097.

相似文献/References:

[1]王亦欣,陈 茜,匡 映,等.植物多糖气凝胶材料应用的研究进展[J].武汉工程大学学报,2017,39(05):443.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 007]
 WANG Yixin,CHEN XI,KUANG Ying,et al.Progress in Application of Polysaccharide Aerogels[J].Journal of Wuhan Institute of Technology,2017,39(03):443.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 007]
[2]李 能,史祖皓,陈星竹,等.插层限域工程制备MXene及其复合材料的研究进展[J].武汉工程大学学报,2019,(01):46.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 007]
 LI Neng,SHI Zuhao,CHEN Xingzhu,et al.Advance Progress in Synthesis of MXene and MXene-Based Composites by Intercalation Confinement Engineering[J].Journal of Wuhan Institute of Technology,2019,(03):46.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 007]
[3]宁佳鑫,邓 勇,李 亮*.MXene及其复合材料的制备与应用研究进展[J].武汉工程大学学报,2022,44(04):371.[doi:10.19843/j.cnki.CN42-1779/TQ. 202103020]
 NING Jiaxin,DENG Yong,LI Liang*.Research Progress in Preparation and Application of MXene and Its Composite Materials[J].Journal of Wuhan Institute of Technology,2022,44(03):371.[doi:10.19843/j.cnki.CN42-1779/TQ. 202103020]
[4]彭 婷,徐金新,张 琪,等.Ti3C2Tx MXene水分散液的稳定性研究[J].武汉工程大学学报,2022,44(06):636.[doi:10.19843/j.cnki.CN42-1779/TQ.202107024]
 PENG Ting,XU Jinxin,ZHANG Qi,et al.Stability of Ti3C2Tx MXene in Aqueous Dispersions[J].Journal of Wuhan Institute of Technology,2022,44(03):636.[doi:10.19843/j.cnki.CN42-1779/TQ.202107024]
[5]李 能,曾宪兵,陈怡君,等.新型二维材料MXene及MBene合成的研究进展[J].武汉工程大学学报,2023,45(01):15.[doi:10.19843/j.cnki.CN42-1779/TQ.202011010]
 LI Neng,ZENG Xianbin,CHEN Yijun,et al.Progress in Synthesis of New Two-Dimensional Materials:MXene and MBene[J].Journal of Wuhan Institute of Technology,2023,45(03):15.[doi:10.19843/j.cnki.CN42-1779/TQ.202011010]
[6]戴 萌,薛开诚,郭 立,等.还原氧化石墨烯气凝胶水蒸发诱导发电性能的研究[J].武汉工程大学学报,2023,45(06):628.[doi:10.19843/j.cnki.CN42-1779/TQ.202211019]
 DAI Meng,XUE Kaicheng,GUO Li,et al.Water Evaporation-Induced Power Generation Performance ofReduced Graphene Oxide Aerogels[J].Journal of Wuhan Institute of Technology,2023,45(03):628.[doi:10.19843/j.cnki.CN42-1779/TQ.202211019]
[7]方 龙,张 鹏,喻湘华,等.聚多巴胺/MXene/Cu改性棉织物的制备及其性能[J].武汉工程大学学报,2024,46(02):155.[doi:10.19843/j.cnki.CN42-1779/TQ.202209032]
 FANG Long,ZHANG Peng,YU Xianghua,et al.Preparation and performance of polydopamine/MXene/Cu-modifiedcotton fabric[J].Journal of Wuhan Institute of Technology,2024,46(03):155.[doi:10.19843/j.cnki.CN42-1779/TQ.202209032]

备注/Memo

备注/Memo:
收稿日期:2020-11-19基金项目:湖北省自然科学基金面上基金(2019CFB415);武汉工程大学第十一届研究生教育创新基金(CX2019061)作者简介:王若冲,硕士研究生。E-mail:1601856986@qq.com*通讯作者:孙义民,博士,副教授,硕士研究生导师。E-mail:ymsun@wit.edu.cn引文格式:王若冲,陈振宇,李厚燊,等. 基于MXene气凝胶的微型超级电容器[J]. 武汉工程大学学报,2021,43(3):288-293,299.
更新日期/Last Update: 2021-06-28