|本期目录/Table of Contents|

[1]程凯旋,杨加美,丁珮珊,等.高密度聚乙烯垫片的非线性压缩-回弹性能测试[J].武汉工程大学学报,2021,43(04):468-472.[doi:10.19843/j.cnki.CN42-1779/TQ. 202105019]
 CHENG Kaixuan,YANG Jiamei,DING Peishan,et al.Nonlinear Compression-Resilience Performance Test of HDPE Gaskets[J].Journal of Wuhan Institute of Technology,2021,43(04):468-472.[doi:10.19843/j.cnki.CN42-1779/TQ. 202105019]
点击复制

高密度聚乙烯垫片的非线性压缩-回弹性能测试(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年04期
页码:
468-472
栏目:
机电与信息工程
出版日期:
2021-08-31

文章信息/Info

Title:
Nonlinear Compression-Resilience Performance Test of HDPE Gaskets
文章编号:
1674 - 2869(2021)04 - 0468 - 05
作者:
程凯旋杨加美丁珮珊程天平张延华郑小涛*
湖北省绿色化工装备工程技术研究中心,武汉工程大学机电工程学院,湖北 武汉 430205
Author(s):
CHENG KaixuanYANG JiameiDING PeishanCHENG TianpingZHANG Yanhua ZHENG Xiaotao*
Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
高密度聚乙烯应力率温度棘轮效应本构模型
Keywords:
high density polyethylene stress ratetemperatureratchet effect constitutive model
分类号:
TQ027.1
DOI:
10.19843/j.cnki.CN42-1779/TQ. 202105019
文献标志码:
A
摘要:
为研究高密度聚乙烯(HDPE)垫片在非线性棘轮实验中的应力率和温度相关性,使用RPL50型蠕变疲劳试验机,对HDPE垫片在循环压缩载荷下的压缩-回弹效应进行了实验研究,建立了HDPE压缩-回弹的本构预测模型。结果表明,HDPE的棘轮变形随着温度增大而增大,当温度大于80 ℃时棘轮变形随温度的升高大幅度增加,在80 ℃时,为常温下的4倍;随着应力率的增大累积的棘轮应变有所下降,由应力率为1 MPa/s时的8.99%下降至0.01 MPa/s时的14.23%,即温度和应力率显著影响HDPE的压缩-回弹性能。本文模型能够较好预测HDPE在不同温度与应力率工况下的非线性压缩-回弹性能,在HDPE垫片的工程设计方面具有一定的应用价值。
Abstract:
To investigate the stress rate and temperature correlation of high-density polyethylene (HDPE)gaskets in nonlinear ratchet experiment, the RPL50 creep fatigue testing machine was used to evaluate the compression-resilience performances of HDPE gaskets under cyclic compression loads.Through experimental research, a theoretical model was established to predict the compression-resilience performances of HDPE gaskets. The results show that the ratchet deformation of HDPE increases with the temperature rises, and when the temperature is higher than 80 ℃, the ratchet deformation increases greatly. It can reach 10.65% at 80 ℃, which is quadruple that at room temperature. With the increase of the stress rate, the cumulative ratchet strain decreases from 8.99% at the stress rate of 1 MPa/s to 14.23% at the stress rate of 0.01 MPa/s. In conclusion,temperature and stress rate significantly affect the compression-resilience energy of HDPE. The model in this paper can better predict the nonlinear compression-resilience performance of HDPE under different temperature and stress rate conditions, and has certain application value in the engineering design of HDPE gaskets.

参考文献/References:

[1] 邵鹏程, 王雁玉, 李渤,等. 高密度聚乙烯的研究及应用[J]. 塑料制造, 2011(4): 98-100. [2] CHEN Y, YAO J, JIANG Z G, et al. Electrically conductive and flame retardant graphene/brominated polystyrene/maleic anhydride grafted high density polyethylene nanocomposites with satisfactory mechanical properties[J]. Chinese Journal of Polymer Science, 2019, 37(5) : 509-517. [3] MARTIENSSEN W , WARLIMONT H. Springer handbook of condensed matter and materials data[M]. Berlin:Springer , 2005.[4] DROZDOV A D, CHRISTIANSEN J D. Cyclic viscoplasticity of high-density polyethylene: experiments and modeling[J]. Computational Materials Science, 2007, 39(2) : 465-480. [5] BEDOUI F, DIANI J, REDNIER G, et al. Microme-chanical modeling of isotropic elastic behavior of semicrystalline polymer [J]. Acta Materialia, 2006, 54(6) : 1513-1523. [6] 张克实, 张光, 余海东. 正交各向异性弹塑性有限变形的有限元计算方法[J]. 兵工学报,2000, 21(增刊1) : 6-9. [7] HACHOUR K, GLOAGUEN J M, AERKANE M, et al. Experiments and modeling of high-crystalline polyethylene yielding under different stress states[J]. International Journal of Plasticity, 2014, 54 : 1-18. [8] 李俊伟,黄宏伟. 土工格室HDPE片材拉伸应变率相关特性[J]. 建筑材料学报,2008(1): 47-51. [9] 陈自鹏,石少卿,罗伟铭,等. 高密度聚乙烯材料在大变形条件下的数值模拟研究[J]. 材料导报,2017,31(20):135-139,146. [10] 陈建康,黄筑平,楚海建, 等. 单向应力条件下松弛时间率相关的非线性粘弹性本构模型[J]. 高分子学报,2003(3): 414-419. [11] MERRY S M , BRAY J D . Time-dependent mechanical response of HDPE geomembranes[J]. Journal of Geotechnical & Geoenvironmental Engineering, 1997, 123(1): 57-65. [12] GANG T, XIA Z. Ratcheting behavior of an epoxy polymer and its effect on fatigue life[J]. Polymer Testing, 2007, 26(4):451-460. [13] GANG T, XIA Z. Biaxial fatigue behavior of an epoxy polymer with mean stress effect[J]. International Journal of Fatigue, 2009, 31(4):678-685. [14] GANG T, XIA Z. Mean stress/strain effect on fatigue behavior of an epoxy resin[J]. International Journal of Fatigue, 2007, 29(12): 2180-2190. [15] 韩鹏飞,李映春,费毕刚,等. 高密度聚乙烯力学性能试验研究[J]. 山西建筑, 2021, 47(1):113-116.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-05-20基金项目:国家自然科学基金 (51975424)作者简介:程凯旋,硕士研究生。E-mail:1377985085@qq.com*通讯作者:郑小涛,博士,教授。E-mail:xiaotaozheng@163.com引文格式:程凯旋,杨加美,丁珮珊,等. 高密度聚乙烯垫片的非线性压缩-回弹性能测试[J]. 武汉工程大学学报,2021,43(4):468-472.
更新日期/Last Update: 2021-08-07