|本期目录/Table of Contents|

[1]陈柳安,吴 涛*,王新兵,等.双脉冲激光锡等离子体数值模拟研究[J].武汉工程大学学报,2023,45(04):442-449.[doi:10.19843/j.cnki.CN42-1779/TQ.202301005]
 CHEN Liuan,WU Tao*,WANG Xinbing,et al.Numerical Simulation of Dual-Pulse Laser Produced Tin Plasma[J].Journal of Wuhan Institute of Technology,2023,45(04):442-449.[doi:10.19843/j.cnki.CN42-1779/TQ.202301005]
点击复制

双脉冲激光锡等离子体数值模拟研究

(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
45
期数:
2023年04期
页码:
442-449
栏目:
机电与信息工程
出版日期:
2023-08-31

文章信息/Info

Title:
Numerical Simulation of Dual-Pulse Laser Produced Tin Plasma
文章编号:
1674 - 2869(2023)04 - 0442- 08
作者:
陈柳安1吴 涛*1王新兵2马修泉3陆培祥3
1. 武汉工程大学光信息与能源工程学院,湖北省光信息与模式识别重点实验室,湖北 武汉 430205;
2. 华中科技大学武汉光电国家研究中心,湖北 武汉 430074;
3. 广东省智能机器人研究院,广东 东莞 523808
Author(s):
CHEN Liuan1 WU Tao*1 WANG Xinbing2 MA Xiuquan3 LU Peixiang3
1. School of Optical Information and Energy Engineering, Wuhan Institute of Technology, Hubei Key Laboratory of Optical Information and Pattern Recognition(Wuhan Institute of Technology), Wuhan 430205, China;
2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;
3. Guangdong Intelligent Robots Institute, Dongguan 523808,China
关键词:
激光产生等离子体光纤激光CO2激光液滴锡靶
Keywords:
laser-produced plasma fiber laser CO2 laser tin droplet target
分类号:
O532
DOI:
10.19843/j.cnki.CN42-1779/TQ.202301005
文献标志码:
A
摘要:
为了提高13.5 nm激光锡等离子体光源的极紫外辐射转换效率,双脉冲技术是一种行之有效的方法,通过数值模拟获得基于双脉冲激光驱动的液滴锡靶等离子体参数的演化行为与辐射机理对设计优化实验方案具有重要意义。利用Flash代码数值模拟研究了双脉冲激光辐照液滴锡靶产生的等离子体在不同波长组合及延时情形下的演化行为,研究结果表明:在双脉冲的时间延时间隔恒定时,主脉冲激光能量的增加会提高等离子体羽辉膨胀速度,导致更高的等离子体温度。随着CO2激光与光纤激光脉冲之间延时的增加,靶材表面等离子体的峰值电子密度逐渐减少,渐趋于临界电子密度,等离子体冕区的电子温度呈下降趋势,且由等温膨胀转换为绝热膨胀的时间间隔增加。CO2激光与光纤激光组合驱动的锡等离子体具有更加合适的极紫外辐射等离子体温度,具有获得较高极紫外辐射转换效率的潜力。

Abstract:
To improve the conversion efficiency of 13.5 nm laser tin plasma light source in the extreme ultraviolet radiation, the double-pulse technique is a proved effective means, and it is important to obtain the evolutionary behavior and radiation mechanism of the plasma parameters of the tin droplet target based on the double-pulse laser drive through numerical simulations to design the optimal experimental scheme. In this paper, the numerical simulations of the evolutionary behaviors of the plasma generated by double-pulse laser irradiation of a tin droplet target at different wavelength combinations and delay time were investigated using Flash code. The results show that the increase of the main pulse laser energy increases the plasma plume expansion velocities and leads to higher plasma temperatures when the time delay intervals of the double pulses are constant. With the increase of delay time between CO2 laser and fiber laser pulses, the peak electron densities of the plasma on the target surface gradually decrease and tend to the critical electron density, while the electron temperatures in the plasma corona region tend to decrease, and the time intervals for conversion from isothermal to adiabatic expansion increase. The tin plasma driven by the combination of CO2 laser and fiber laser has a more suitable extreme ultraviolet radiation plasma temperature and has the potential to obtain a higher conversion efficiency of extreme ultraviolet radiation.



参考文献/References:

[1] 邓常猛, 耿永友, 吴谊群. 激光光刻技术的研究与发展[J]. 红外与激光工程, 2012, 41(5): 1223-1231.

[2] DE FARIA PINTO T,MATHIJSSEN J,MEIJER R, et al. Cylindrically and non-cylindrically symmetric expansion dynamics of tin microdroplets after ultrashort laser pulse impact[J]. Applied Physics A, 2021, 127(2): 93:1-10.
[3] FOMENKOV I, SCHAFGANS A, ROKITSKI S, et al. Industrialization of a laser produced plasma EUV light source for lithography[C] //2017 Conference on Lasers and Electro-Optics:Conference on Lasers and Electro-Optics(CLEO 2017).New York: Institute of Electrical and Electronics Engineers, 2017.
[4] VERSOLATO O O. Physics of laser-driven tin plasma sources of EUV radiation for nanolithography[J]. Plasma Sources Science and Technology, 2019, 28(8): 83001:1-18.
[5] SIZYUK T, HASSANEIN A. Enhancing extreme ultraviolet photons emission in laser produced plasmas for advanced lithography[J]. Physics of Plasmas, 2012, 19(8): 083102:1-7.
[6] SIZYUK T, HASSANEIN A. Optimization of extreme ultraviolet photons emission and collection in mass-limited laser produced plasmas for lithography application[J]. Journal of Applied Physics, 2012, 112(3): 033102:1-6.
[7] LI Z M, JIN Q Y, ZHANG J J, et al. Realization of double-pulse laser irradiating scheme for laser ion sources[J]. Nuclear Physics Review, 2015,32(1): 59-62.
[8] IRISSOU E, VIDAL F, JOHNSTON T, et al. Influence of an inert background gas on bimetallic cross-beam pulsed laser deposition[J]. Journal of applied physics, 2006, 99(3): 034904:1-14.
[9] LUNA H, KAVANAGH K D, COSTELLO J T. Study of a colliding laser-produced plasma by analysis of time-and space-resolved image spectra[J]. Journal of Applied Physics, 2007, 101(3): 033302:1-6.
[10] LI Y Q, WU R N, DAI Q, et al. Enhancement of long wavelength preheating in dual-beam laser induced breakdown spectroscopy[J]. AIP Advances, 2018, 8(9): 095112:1-8.
[11] CUMMINS T, O’GORMAN C, DUNNE P, et al. Colliding laser-produced plasmas as targets for laser-generated extreme ultraviolet sources[J]. Applied Physics Letters, 2014, 105(4): 044101:1-4.
[12] FUJIOKA S, SHIMOMURA M, SHIMADA Y, et al. Pure-tin microdroplets irradiated with double laser pulses for efficient and minimum-mass extreme-ultraviolet light source production[J]. Applied Physics Letters, 2008, 92(24): 241502:1-3.
[13] MORDOVANAKIS A G, HOU K C, CHANG Y C, et al. Demonstration of fiber-laser-produced plasma source and application to efficient extreme UV light generation[J]. Optics Letters, 2006, 31(17): 2517-2519.
[14] GEORGE S A, HOU K C, TAKENOSHITA K, et al. 13.5 nm EUV generation from tin-doped droplets using a fiber laser[J]. Optics Express, 2007, 15(25): 16348-16356.
[15] CHANG C L, LI Y Y, LAI P Y, et al. High-intensity nanosecond all-fiber-coiled laser and extreme ultraviolet generation[C]//Fiber Lasers XII:Technology,Systems, and Applications:Conference on Fiber Lasers XII. Washington:SPIE, 2015: 93440C:1-10.
[16] WANG J L, WANG X L, LEI J J, et al. Recent advances in mode-locked fiber lasers based on two-dimensional materials[J]. Nanophotonics, 2020, 9(8): 2315-2340.
[17] 吴涛, 王世芳. 激光等离子体羽辉膨胀的流体动力学模型及数值模拟[J]. 武汉工程大学学报, 2011, 33(11): 95-98.
[18] ORBAN C, FATENEJAD M, CHAWLA S, et al. A radiation-hydrodynamics code comparison for laser-produced plasmas: FLASH versus HYDRA and the results of validation experiments[OL]. (2013-06-07)[2023-01-13].https://doi.org/10.485501/arxiv. 1306.
1584.
[19] TANAKA H, MATSUMOTO A,AKINAGA K, et al. Comparative study on emission characteristics of extreme ultraviolet radiation from CO2 and Nd:YAG laser-produced tin plasmas[J]. Applied Physics Letters, 2005, 87(4): 041503:1-3.
[20] FREEMAN J R, HARILAL S S, SIZYUK T, et al. Wavelength dependence of prepulse laser beams on EUV emission from CO2 reheated Sn plasma[C] //Extreme Ultraviolet (EUV) Lithography III.Washington: SPIE-International Society for Optics and Photonics, 2012:83220H:1-7.
[21] ENDO A, SMR? M, MU?íK J, et al. kW-class picosecond thin-disc prepulse laser Perla for efficient EUV generation[J]. Journal of Micro-Nanolithography MEMS & MOEMS, 2017, 16(4): 041001:1-6.
[22] 龙城德, 赵斌, 袁鹏, 等. 小焦斑纳秒激光烧蚀铝平面靶的数值研究[J]. 强激光与粒子束, 2014, 26(10): 102005:1-6.
[23] GAMBINO N, BRANDSTATTER M, ROLLINGER B, et al. A hemispherical Langmuir probe array detector for angular resolved measurements on droplet-based laser-produced plasmas[J]. Review of Scientific Instruments,2014,85(9):093302:1-8.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-01-13
基金项目:广东省重大基础与应用基础研究项目(2019B030302003)
作者简介:陈柳安,硕士研究生。E-mail:cla13124281964@163.com
*通讯作者:吴 涛,博士,教授。E-mail: wutao@wit.edu.cn
引文格式:陈柳安,吴涛,王新兵,等. 双脉冲激光锡等离子体数值模拟研究[J]. 武汉工程大学学报,2023,45(4):442-449.
更新日期/Last Update: 2023-08-31