|本期目录/Table of Contents|

[1]李 娜,许梦莹,陈紫伟,等.镍掺杂二氧化锡的制备及对甲苯的气敏性能[J].武汉工程大学学报,2016,38(3):249-254.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 009]
 LI Na,XU Mengying,CHEN Ziwei,et al.Preparation and Toluene Sensing Properties of Nickel Doped Tin Oxide[J].Journal of Wuhan Institute of Technology,2016,38(3):249-254.[doi:10. 3969/j. issn. 1674?2869. 2016. 03. 009]
点击复制

镍掺杂二氧化锡的制备及对甲苯的气敏性能(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
38
期数:
2016年3期
页码:
249-254
栏目:
材料科学与工程
出版日期:
2016-06-22

文章信息/Info

Title:
Preparation and Toluene Sensing Properties of Nickel Doped Tin Oxide
作者:
李 娜许梦莹陈紫伟洪玉元孟 柱林志东*
等离子体化学与新材料湖北省重点实验室(武汉工程大学),湖北 武汉 430074
Author(s):
LI Na XU Mengying CHEN Ziwei HONG Yuyuan MENG Zhu LIN Zhidong*
Hubei Key Laboratory of Plasma Chemical and Advanced Materials(Wuhan Institute of Technology),Wuhan 430074, China
关键词:
镍掺杂二氧化锡传感器气敏性能水热法
Keywords:
nickel doped tin oxide sensor gas-sensing property hydrothermal method
分类号:
TP212.2
DOI:
10. 3969/j. issn. 1674?2869. 2016. 03. 009
文献标志码:
A
摘要:
以五水四氯化锡和六水合氯化镍为原料,四乙基氢氧化铵为沉淀剂,用水热法制备出镍掺杂二氧化锡纳米材料. 通过X射线衍射、比表面及孔径分析仪对制备的纳米材料进行表征. 结果表明:制备的镍掺杂二氧化锡材料为纳米材料,晶粒尺寸小于10 nm. 镍的掺杂量为10 %(摩尔分数)的二氧化锡气敏元件对甲苯的气敏性能最好,在最佳工作温度400 ℃下,其对气体体积分数为1×10-4甲苯气体的灵敏度为18.05,与纯二氧化锡气敏元件的灵敏度(8.71)相比,提高了1倍.
Abstract:
Nickel doped tin oxide nanomaterials were synthesized by hydrothermal method using stannic chloride pentahydrate and nickel chloride hexahydrate as raw materials and tetraethyl ammonium hydroxide as precipitant. The obtained nanomaterials were charactered by X-ray diffractometer and Brunauer Emmett Teller N2 adsorption-desorption analyzer. The result showed that the nickel doped tin oxide materials are nanocrystals with the grain sizes less than 10 nm. The tin oxide sensor with 10 mol% nickel doped concentration exhibites good gas-sensing properties, and the sensitivity of the sensor to 1×10-4 toluene (volume ratio) is 18.05 at the optimum operating temperature (400 ℃), which almost doubles that of the pure tin oxide sensor (8.71).

参考文献/References:

[1] INYAWILERT K, WISITSORAAT A, TUANTRANONT A, et al. Ultra-rapid VOCs sensors based on sparked-In2O3 sensing films[J]. Sensors and actuators B: chemical, 2014, 192: 745-754. [2] BOEGLIN M L, WESSELS D, HENSHEL D. An investigation of the relationship between air emissions of volatile organic compounds and the incidence of cancer in Indiana counties[J]. Environmental research, 2006, 100:242-254. [3] ARAKAWA T, WANW X, KAJIRO T, et al. A direct gaseous ethanol imaging system for analysis of alcohol metabolism from exhaled breath[J]. Sensors and actuators B: chemical, 2013, 186: 27-33. [4] PARK J K, YEE H J, LEE K S, et al. Determination of breath alcohol using a differential-type amperometric biosensor based on alcohol dehydrogenase[J]. Analytica chimica acta, 1999, 390: 83-91. [5] LANCE W. Indoor air monitoring program and preliminary results of the U.S. EPA[R]. Washington D. C: National academy press, 1982. [6] LIN Z D, SONG W L, YANG H M. Highly sensitive gas sensor based on coral-like SnO2 prepared with hydrothermal treatment[J]. Sensors and actuators B: chemical, 2012, 173: 22-27. [7] ZOU X M, WANG J L, LIU X Q, et al. Rational design of sub-parts per million specific gas sensors array based on metal nanoparticles decorated nanowire enhancement-mode transistors[J]. Nano letters, 2013, 13: 3287-3292. [8] MOON H G, SHIM Y S, KIM D H, et al. Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors[J]. Scientific reports, 2012, 2: 588-594. [9] NGUYEN H, EI-SAFTY S A. Meso-and macroporous Co3O4?nanorods for effective VOC gas sensors[J]. Journal of physical chemistry C, 2011, 115(17): 8466-8474. [10] YOON J W, HONG Y J, KANG Y C, et al. High performance chemiresistive H2S sensors using Ag-loaded SnO2?yolk-shell nanostructures[J]. RSC advances, 2014, 4(31): 16067-16074. [11] GUO C L, LIN Z D, SONG W L, et al. Synthesis, UV response, and room-temperature ethanol sensitivity of undoped and Pd-doped coral-like SnO2[J]. Journal of nanoparticle research, 2013, 15(10): 1-8. [12] RAI R. Study of structural and electrical properties of pure and Zn-Cu doped SnO2[J]. Advanced materials letters, 2010, 1(1): 55-58. [13] GALATSIS K, CUKROV L, WLODARSKI W, et al. P-and n-type Fe-doped SnO2 gas sensors fabricated by the mechanochemical processing technique[J]. Sensors and actuators B: chemical, 2003, 93: 562- 565. [14] JAIN K, PANT R P, LAKSHMIKUMAR S T. Effect of Ni doping on thick film SnO2 gas sensor[J]. Sensors and actuators B: chemical, 2006, 113(2), 823-829. [15] CHEN Y, YU L, FENG D, et al. Superior ethanol-sensing properties based on Ni-doped SnO2 p-n heterojunction hollow spheres[J]. Sensors and actuators B: chemical, 2012, 166-167: 61-67. [16] LIU X H, ZHANG J, GUO X Z, et al. Enhanced sensor response of Ni-doped SnO2 hollow spheres[J]. Sensors and actuators B: chemical, 2011, 152(2), 162-167. [17] SINGKAMMO S, WISITSORAAT A, SRIPRACHUABWONG C, et al. Electrolytically exfoliated graphene-loaded flame-made Ni-doped SnO2 composite film for acetone Sensing[J]. ACS applied materials & interfaces, 2015, 7(5), 3077-3092. [18] RUMYANTSEVA M N, SAFONOVA O V, BOULOVA M N, et al. Dopants in nanocrystalline tin dioxide[J]. Russian chemical bulletin, 2003, 52(6): 1217-1238. [19] CASTRO R H R, HIDALGO P, MUCCILLO R, et al. Microstructure and structure of NiO-SnO2 and Fe2O3-SnO2 systems[J]. Applied surface science, 2003, 214: 172-177. [20] HIDALGO P, CASTRO R H R, COELHO A C V, et al. Surface segregation and consequent SO2 sensor response in SnO2-NiO[J]. Chemistry of materials, 2005, 17: 4149-4153.本文编辑:龚晓宁

相似文献/References:

[1]宋文龙,郑聚成,陈高峰,等.氧化钛锡复合纳米粉的制备及其气敏性[J].武汉工程大学学报,2011,(07):81.
 SONG Wenlong,ZHENG Jucheng,CHEN Gaofeng,et al.Preparation and gassensing characterization of TiO2 and SnO2 composite nanoparticles? [J].Journal of Wuhan Institute of Technology,2011,(3):81.
[2]林志东,宋文龙,王珂,等.聚乙二醇修饰纳米二氧化锡的制备及气敏特性[J].武汉工程大学学报,2013,(03):52.[doi:103969/jissn16742869201303011]
 LIN Zhi dong,SONG Wen long,WANG Ke,et al.Preparation and gassensing characteristic of polyethylene glycol modified NanoSnO2[J].Journal of Wuhan Institute of Technology,2013,(3):52.[doi:103969/jissn16742869201303011]
[3]李 奇.基于综合参数调控的LED智能照明系统[J].武汉工程大学学报,2015,37(10):61.[doi:10. 3969/j. issn. 1674-2869. 2015. 10. 012]
 Smart luminance system of LED based on comprehensive parameter control[J].Journal of Wuhan Institute of Technology,2015,37(3):61.[doi:10. 3969/j. issn. 1674-2869. 2015. 10. 012]
[4]梁建东,杨 炎,董 帅,等.自修复电子器件的研究进展[J].武汉工程大学学报,2022,44(01):9.[doi:10.19843/j.cnki.CN42-1779/TQ.202103025]
 LIANG Jiandong,YANG Yan,DONG Shuai,et al.Recent Progress in Self-Healing Electronic Devices[J].Journal of Wuhan Institute of Technology,2022,44(3):9.[doi:10.19843/j.cnki.CN42-1779/TQ.202103025]
[5]黄天龙,杜寒威,魏端丽,等.多功能聚吡咯复合水凝胶传感器的制备与性能研究[J].武汉工程大学学报,2022,44(06):629.[doi:10.19843/j.cnki.CN42-1779/TQ.202112019]
 HUANG Tianlong,DU Hanwei,WEI Duanli,et al.Preparation and Properties of Multifunctional Polypyrrole?Composite Hydrogel Sensor[J].Journal of Wuhan Institute of Technology,2022,44(3):629.[doi:10.19843/j.cnki.CN42-1779/TQ.202112019]

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2016-06-23