[1] HUANG D,SWANSON E A,LIN C P,et al. Optical coherence tomography [J]. Science,1991,254(5035):1178-1181.
[2] FERCHER A F,DREXLER W,HITZENBERGER C K,et al. Optical coherence tomography-principles and applications [J]. Reports on Progress in Physics,2003,66(2):239-303.
[3] BREZINSKI M E. Optical coherence tomography:principles and applications [M]. Burlington,Mass.:Elsevier,2006.
[4] SCHMITT J M. Optical coherence tomography (OCT):a review [J]. IEEE Journal of Selected Topics in Quantum Electronics,1999,5(4):1205-1215.
[5] GABRIELE M L,WOLLSTEIN G,ISHIKAWA H,et al. Optical coherence tomography:history,current status,and laboratory work [J]. Investigative Ophthalmology & Visual Science,2011,52(5):2425-2436.
[6] ZYSK A M,NGUYEN F T,OLDENBURG A L,et al. Optical coherence tomography:a review of clinical development from bench to bedside [J]. Journal of Biomedical Optics,2007,12(5):051403.
[7] WEBSTER P J L, MULLER M S, FRASER J M. High speed in situ depth profiling of ultrafast micromachining[J]. Optics Express,2007,15(23):14967-14972.
[8] TOMLINS P H, WANG R K. Theory,developments and applications of optical coherence tomography [J]. Journal of Physics D:Applied Physics,2005,38(15):2519-2535.
[9] HITZENBERGER C K,BAUMGARTNER A,DREXLER W,et al. Dispersion effects in partial coherence interferometry:implications for intraocular ranging [J]. Journal of Biomedical Optics,1999,4(1):144-151.
[10] SMITH E D J, ZVYAGIN A V, SAMPSON D D. Real-time dispersion compensation in scanning interferometry [J]. Optics Letters,2002,27(22):1998-2000.
[11] FERCHER A F,HITZENBERGER C K,STICKER M,et al. Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography [J]. Optics Express,2001,9(12):610-615.
[12] KWIAT P G,MATTLE K,WEINFURTER H,et al. New high-intensity source of polarization-entangled photon pairs [J]. Physical Review Letters,1995,75(24):4337-4341.
[13] KWIAT P G, WAKS E, WHITE A G, et al. Ultrabright source of polarization-entangled photons [J]. Physical Review A,1999,60(2):R773-R776.
[14] JIN R B, SHIMIZU R, WAKUI K, et al. Widely tunable single photon source with high purity at telecom wavelength [J]. Optics Express,2013,21(9):10659-10666.
[15] YIN J, CAO Y, LI Y H, et al. Satellite-based entanglement distribution over 1 200 kilometers [J]. Science,2017,356(6343):1140-1144.
[16] ZHONG H S,WANG H,DENG Y H,et al. Quantum computational advantage using photons [J]. Science,2020,370(6523):1460-1463.
[17] CAI N,CAI W H,WANG S,et al. Broadband-laser-diode pumped periodically poled potassium titanyl phosphate-Sagnac polarization-entangled photon source [J]. Journal of the Optical Society of America B,2022,39(1):77-82.
[18] ANWAR A, PERUMANGATT C,STEINLECHNER F,et al. Entangled photon-pair sources based on three-wave mixing in bulk crystals [J]. Review of Scientific Instruments,2021,92(4):041101.
[19] FRANSON J D. Nonlocal cancellation of dispersion [J]. Physical Review A,1992,45(5):3126-3132.
[20] OKANO M,OKAMOTO R,TANAKA A,et al. Dispersion cancellation in high-resolution two-photon interference [J]. Physical Review A,2013,88(4):043845.
[21] ABOURADDY A F, NASR M B, SALEH B E A,et al. Quantum-optical coherence tomography with dispersion cancellation [J]. Physical Review A,2002,65(5):053817.
[22] TEICH M C,SALEH B E A,WONG F N C,et al. Variations on the theme of quantum optical coherence tomography:a review [J]. Quantum Information Processing,2012,11(4):903-923.
[23] HONG C K,OU Z Y,MANDEL L. Measurement of subpicosecond time intervals between two photons by interference [J]. Physical Review Letters,1987,59(18):2044-2046.
[24] NASR M B,SALEH B E A,SERGIENKO A V,et al. Demonstration of dispersion-canceled quantum-optical coherence tomography[J]. Physical Review Letters,2003,91(8):083601.
[25] NASR M B,SALEH B E A,SERGIENKO A V,et al. Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography [J]. Optics Express,2004,12(7):1353-1362.
[26] BOOTH M C, DI GIUSEPPE G, SALEH B E A,et al. Polarization-sensitive quantum-optical coherence tomography [J]. Physical Review A,2004,69(4):043815.
[27] BOOTH M C, SALEH B E A, TEICH M C. Polarization-sensitive quantum optical coherence tomography:experiment [J]. Optics Communications,2011,284(10/11):2542-2549.
[28] NASR M B, GOODE D P, NGUYEN N, et al. Quantum optical coherence tomography of a biological sample [J]. Optics Communications,2009,282(6):1154-1159.
[29] CARRASCO S, TORRES J P, TORNER L, et al. Enhancing the axial resolution of quantum optical coherence tomography by chirped quasi-phase matching [J]. Optics Letters,2004,29(20):2429-2431.
[30] NASR M B,MINAEVA O,GOLTSMAN G N,et al. Submicron axial resolution in an ultrabroadband two-photon interferometer using superconducting single-photon detectors [J]. Optics Express,2008,16(19):15104-15108.
[31] MOHAN N,MINAEVA O,GOLTSMAN G N,et al. Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1 064 nm [J]. Applied Optics,2009,48(20):4009-4017.
[32] ERKMEN B I, SHAPIRO J H. Phase-conjugate optical coherence tomography [J]. Physical Review A,2006,74(4):041601.
[33] LAVOIE J,KALTENBAEK R,RESCH K J. Quantum- optical coherence tomography with classical light [J]. Optics Express,2009,17(5):3818-3826.
[34] LE GOU?T J,VENKATRAMAN D,WONG F N C,et al. Experimental realization of phase-conjugate optical coherence tomography [J]. Optics Letters,2010,35(7):1001-1003.
[35] OGAWA K, TAMATE S, NAKANISHI T, et al. Classical realization of dispersion cancellation by time-reversal method [J]. Physical Review A,2015,91(1):013846.
[36] OGAWA K, KITANO M. Classical realization of dispersion-canceled,artifact-free,and background-free optical coherence tomography [J]. Optics Express,2016,24(8):8280-8289.
[37] KOLENDERSKA S M,KOLENDERSKI P. Intensity correlation OCT:a true classical equivalent of quantum OCT able to achieve up to 2-fold resolution improvement in standard OCT images [J]. arXiv preprint arXiv:2101.04826,2021,1-11.
[38] OKANO M,LIM H H,OKAMOTO R,et al. 0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography [J]. Scientific Reports,2015,5:18042.
[39] POVAZAY B,BIZHEVA K,UNTERHUBER A,et al. Submicrometer axial resolution optical coherence tomography [J]. Optics Letters,2002,27(20):1800-1802.
[40] YEPIZ-GRACIANO P,MARTíNEZ A M A,LOPEZ-MAGO D,et al. Spectrally resolved Hong-Ou-Mandel interferometry for quantum-optical coherence tomography [J]. Photonics Research,2020,8(6):1023-1034.
[41]KOLENDERSKA S M,VANHOLSBEECK F,KOLENDERSKI P. Fourier domain quantum optical coherence tomography [J]. Optics Express,2020,28(20):29576-29589.
[42] IBARRA-BORJA Z,SEVILLA-GUTIéRREZ C,RAMíREZ-ALARCóN R,et al. Experimental demonstration of full-field quantum optical coherence tomography [J]. Photonics Research,2020,8(1):51-56.
[43] SUKHARENKO V,BIKORIMANA S,DORSINVI-LLE R. Birefringence and scattering characterization using polarization sensitive quantum optical coherence tomography [J]. Optics Letters,2021,46(12):2799-2802.
[44] HAYAMA K,CAO B,OKAMOTO R,et al. High-depth-resolution imaging of dispersive samples using quantum optical coherence tomography [J]. Optics Letters,2022,47(19):4949-4952.
[45] GRACIANO P Y, MARTíNEZ A M A, LOPEZ-MAGO D,et al. Interference effects in quantum-optical coherence tomography using spectrally engineered photon pairs [J]. Scientific Reports,2019,9:8954.
[46] KOLENDERSKA S M, SZKULMOWSKI M. Artefact-removal algorithms for Fourier domain quantum optical coherence tomography [J]. Scientific Reports,2021,11:18585.
[47] MALISZEWSKI K A, KOLENDERSKA S M. Artefact removal for quantum optical coherence tomography using machine learning [C]// IZATT J A,FUJIMOTO J G. Proceedings of SPIE 11630. Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV. [S.l.]:SPIE,2021,1163012:1-9.
[48] LIU T T, SUN Y F, ZHANG X D. Denoising of Fourier domain quantum optical coherence tomography spectrums based on deep-learning methods [J]. Optics Continuum,2022,1(4):705-717.
[49] CHEN Y Y, LEóN-MONTIEL R D J,CHEN L X. Quantum interferometric two-photon excitation spectroscopy [J]. New Journal of Physics,2022,24(11):113014.
[50] CHEN Y Y, CHEN L X. Quantum Wiener-Khinchin theorem for spectral-domain optical coherence tomography [J]. Physical Review Applied,2022,18(1):014077.
[51] JIN R B, SHIMIZU R. Extended Wiener-Khinchin theorem for quantum spectral analysis [J]. Optica,2018,5(2):93-98.
[52] YEPIZ-GRACIANO P, IBARRA-BORJA Z, RAMíREZ ALARCóN R,et al. Quantum optical coherence microscopy for bioimaging applications [J]. Physical Review Applied,2022,18(3):034060.