|本期目录/Table of Contents|

[1]王宏伟,郝向英*,金锐博*.量子光学相干层析术的研究进展[J].武汉工程大学学报,2025,47(01):64-74.[doi:10.19843/j.cnki.CN42-1779/TQ.202306001]
 WANG Hongwei,HAO Xiangying*,JIN Ruibo*.Research progress in quantum optical coherence tomography[J].Journal of Wuhan Institute of Technology,2025,47(01):64-74.[doi:10.19843/j.cnki.CN42-1779/TQ.202306001]
点击复制

量子光学相干层析术的研究进展
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年01期
页码:
64-74
栏目:
机电与信息工程
出版日期:
2025-02-28

文章信息/Info

Title:
Research progress in quantum optical coherence tomography
文章编号:
1674 - 2869(2025)01 - 0064 - 11
作者:
光学信息与模式识别湖北省重点实验室(武汉工程大学),湖北 武汉 430205
Author(s):
Hubei Key Laboratory of Optical Information and Pattern Recognition(Wuhan Institute of Technology),Wuhan 430205,China
关键词:
Keywords:
分类号:
O431.2
DOI:
10.19843/j.cnki.CN42-1779/TQ.202306001
文献标志码:
A
摘要:
量子光学相干层析技术(QOCT)具有高分辨率、非接触、无损检测、不受偶数阶色散影响等优点,在生物医学、材料学、精密测量等领域具有重要的应用前景。对近年来QOCT的研究进展进行了整理和归纳,主要包含3个方面:在提高分辨率方面,通过增加光源的频谱宽度来减小其时域宽度,从而使分辨率不断地获得提高;在提高成像速率方面,通过采用频域测量的方法来代替时域繁琐的扫描测量方式,大幅减少了数据采集所需时间;在伪影去除方面,通过使用新型数学算法或机器学习算法,可以显著抑制QOCT对简单样品成像过程中存在的伪影。对比分析了经典光学相干层析技术、QOCT以及量子模仿光学相干层析技术中不同方案的优缺点。结合QOCT研究的发展趋势,对今后实现更高分辨率的成像、测量更复杂的样品、高效去除伪影、开发样机等重点研究方向进行了展望,可为后续QOCT的进一步深入研究提供指导。
Abstract:
Quantum optical coherence tomography (QOCT) has the advantages of high resolution,non-contact operation,non-destructive testing,and immunity to even-order dispersion. It has prospects for broad applications in biomedicine,materials science,precision measurement,and other fields. This article summarizes the recent research progress in QOCT,which mainly includes three aspects: in terms of improving resolution,the time-domain width of the light source is reduced by increasing its spectral width,thereby continuously improving resolution; in terms of improving imaging speed,the use of frequency-domain measurement methods instead of the cumbersome time-domain scanning measurement methods significantly reduces the time required for data acquisition; in terms of artifact removal,the use of new mathematical algorithms or machine learning algorithms can significantly suppress the artifacts in the QOCT imaging of simple samples. The advantages and disadvantages of different schemes in classical optical coherence tomography (OCT),QOCT,and quantum mimetic OCT are compared and analyzed. Based on the development trend of QOCT research,this article provides prospects for key research directions such as achieving higher-resolution imaging,measuring more complex samples,efficiently removing artifacts,and developing prototypes in the future. This can provide guidance for further in-depth research on QOCT in the future.

参考文献/References:

[1] HUANG D,SWANSON E A,LIN C P,et al. Optical coherence tomography [J]. Science,1991,254(5035):1178-1181.
[2] FERCHER A F,DREXLER W,HITZENBERGER C K,et al. Optical coherence tomography-principles and applications [J]. Reports on Progress in Physics,2003,66(2):239-303.
[3] BREZINSKI M E. Optical coherence tomography:principles and applications [M]. Burlington,Mass.:Elsevier,2006.
[4] SCHMITT J M. Optical coherence tomography (OCT):a review [J]. IEEE Journal of Selected Topics in Quantum Electronics,1999,5(4):1205-1215.
[5] GABRIELE M L,WOLLSTEIN G,ISHIKAWA H,et al. Optical coherence tomography:history,current status,and laboratory work [J]. Investigative Ophthalmology & Visual Science,2011,52(5):2425-2436.
[6] ZYSK A M,NGUYEN F T,OLDENBURG A L,et al. Optical coherence tomography:a review of clinical development from bench to bedside [J]. Journal of Biomedical Optics,2007,12(5):051403.
[7] WEBSTER P J L, MULLER M S, FRASER J M. High speed in situ depth profiling of ultrafast micromachining[J]. Optics Express,2007,15(23):14967-14972.
[8] TOMLINS P H, WANG R K. Theory,developments and applications of optical coherence tomography [J]. Journal of Physics D:Applied Physics,2005,38(15):2519-2535.
[9] HITZENBERGER C K,BAUMGARTNER A,DREXLER W,et al. Dispersion effects in partial coherence interferometry:implications for intraocular ranging [J]. Journal of Biomedical Optics,1999,4(1):144-151.
[10] SMITH E D J, ZVYAGIN A V, SAMPSON D D. Real-time dispersion compensation in scanning interferometry [J]. Optics Letters,2002,27(22):1998-2000.
[11] FERCHER A F,HITZENBERGER C K,STICKER M,et al. Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography [J]. Optics Express,2001,9(12):610-615.
[12] KWIAT P G,MATTLE K,WEINFURTER H,et al. New high-intensity source of polarization-entangled photon pairs [J]. Physical Review Letters,1995,75(24):4337-4341.
[13] KWIAT P G, WAKS E, WHITE A G, et al. Ultrabright source of polarization-entangled photons [J]. Physical Review A,1999,60(2):R773-R776.
[14] JIN R B, SHIMIZU R, WAKUI K, et al. Widely tunable single photon source with high purity at telecom wavelength [J]. Optics Express,2013,21(9):10659-10666.
[15] YIN J, CAO Y, LI Y H, et al. Satellite-based entanglement distribution over 1 200 kilometers [J]. Science,2017,356(6343):1140-1144.
[16] ZHONG H S,WANG H,DENG Y H,et al. Quantum computational advantage using photons [J]. Science,2020,370(6523):1460-1463.
[17] CAI N,CAI W H,WANG S,et al. Broadband-laser-diode pumped periodically poled potassium titanyl phosphate-Sagnac polarization-entangled photon source [J]. Journal of the Optical Society of America B,2022,39(1):77-82.
[18] ANWAR A, PERUMANGATT C,STEINLECHNER F,et al. Entangled photon-pair sources based on three-wave mixing in bulk crystals [J]. Review of Scientific Instruments,2021,92(4):041101.
[19] FRANSON J D. Nonlocal cancellation of dispersion [J]. Physical Review A,1992,45(5):3126-3132.
[20] OKANO M,OKAMOTO R,TANAKA A,et al. Dispersion cancellation in high-resolution two-photon interference [J]. Physical Review A,2013,88(4):043845.
[21] ABOURADDY A F, NASR M B, SALEH B E A,et al. Quantum-optical coherence tomography with dispersion cancellation [J]. Physical Review A,2002,65(5):053817.
[22] TEICH M C,SALEH B E A,WONG F N C,et al. Variations on the theme of quantum optical coherence tomography:a review [J]. Quantum Information Processing,2012,11(4):903-923.
[23] HONG C K,OU Z Y,MANDEL L. Measurement of subpicosecond time intervals between two photons by interference [J]. Physical Review Letters,1987,59(18):2044-2046.
[24] NASR M B,SALEH B E A,SERGIENKO A V,et al. Demonstration of dispersion-canceled quantum-optical coherence tomography[J]. Physical Review Letters,2003,91(8):083601.
[25] NASR M B,SALEH B E A,SERGIENKO A V,et al. Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography [J]. Optics Express,2004,12(7):1353-1362.
[26] BOOTH M C, DI GIUSEPPE G, SALEH B E A,et al. Polarization-sensitive quantum-optical coherence tomography [J]. Physical Review A,2004,69(4):043815.
[27] BOOTH M C, SALEH B E A, TEICH M C. Polarization-sensitive quantum optical coherence tomography:experiment [J]. Optics Communications,2011,284(10/11):2542-2549.
[28] NASR M B, GOODE D P, NGUYEN N, et al. Quantum optical coherence tomography of a biological sample [J]. Optics Communications,2009,282(6):1154-1159.
[29] CARRASCO S, TORRES J P, TORNER L, et al. Enhancing the axial resolution of quantum optical coherence tomography by chirped quasi-phase matching [J]. Optics Letters,2004,29(20):2429-2431.
[30] NASR M B,MINAEVA O,GOLTSMAN G N,et al. Submicron axial resolution in an ultrabroadband two-photon interferometer using superconducting single-photon detectors [J]. Optics Express,2008,16(19):15104-15108.
[31] MOHAN N,MINAEVA O,GOLTSMAN G N,et al. Ultrabroadband coherence-domain imaging using parametric downconversion and superconducting single-photon detectors at 1 064 nm [J]. Applied Optics,2009,48(20):4009-4017.
[32] ERKMEN B I, SHAPIRO J H. Phase-conjugate optical coherence tomography [J]. Physical Review A,2006,74(4):041601.
[33] LAVOIE J,KALTENBAEK R,RESCH K J. Quantum- optical coherence tomography with classical light [J]. Optics Express,2009,17(5):3818-3826.
[34] LE GOU?T J,VENKATRAMAN D,WONG F N C,et al. Experimental realization of phase-conjugate optical coherence tomography [J]. Optics Letters,2010,35(7):1001-1003.
[35] OGAWA K, TAMATE S, NAKANISHI T, et al. Classical realization of dispersion cancellation by time-reversal method [J]. Physical Review A,2015,91(1):013846.
[36] OGAWA K, KITANO M. Classical realization of dispersion-canceled,artifact-free,and background-free optical coherence tomography [J]. Optics Express,2016,24(8):8280-8289.
[37] KOLENDERSKA S M,KOLENDERSKI P. Intensity correlation OCT:a true classical equivalent of quantum OCT able to achieve up to 2-fold resolution improvement in standard OCT images [J]. arXiv preprint arXiv:2101.04826,2021,1-11.
[38] OKANO M,LIM H H,OKAMOTO R,et al. 0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography [J]. Scientific Reports,2015,5:18042.
[39] POVAZAY B,BIZHEVA K,UNTERHUBER A,et al. Submicrometer axial resolution optical coherence tomography [J]. Optics Letters,2002,27(20):1800-1802.
[40] YEPIZ-GRACIANO P,MARTíNEZ A M A,LOPEZ-MAGO D,et al. Spectrally resolved Hong-Ou-Mandel interferometry for quantum-optical coherence tomography [J]. Photonics Research,2020,8(6):1023-1034.
[41]KOLENDERSKA S M,VANHOLSBEECK F,KOLENDERSKI P. Fourier domain quantum optical coherence tomography [J]. Optics Express,2020,28(20):29576-29589.
[42] IBARRA-BORJA Z,SEVILLA-GUTIéRREZ C,RAMíREZ-ALARCóN R,et al. Experimental demonstration of full-field quantum optical coherence tomography [J]. Photonics Research,2020,8(1):51-56.
[43] SUKHARENKO V,BIKORIMANA S,DORSINVI-LLE R. Birefringence and scattering characterization using polarization sensitive quantum optical coherence tomography [J]. Optics Letters,2021,46(12):2799-2802.
[44] HAYAMA K,CAO B,OKAMOTO R,et al. High-depth-resolution imaging of dispersive samples using quantum optical coherence tomography [J]. Optics Letters,2022,47(19):4949-4952.
[45] GRACIANO P Y, MARTíNEZ A M A, LOPEZ-MAGO D,et al. Interference effects in quantum-optical coherence tomography using spectrally engineered photon pairs [J]. Scientific Reports,2019,9:8954.
[46] KOLENDERSKA S M, SZKULMOWSKI M. Artefact-removal algorithms for Fourier domain quantum optical coherence tomography [J]. Scientific Reports,2021,11:18585.
[47] MALISZEWSKI K A, KOLENDERSKA S M. Artefact removal for quantum optical coherence tomography using machine learning [C]// IZATT J A,FUJIMOTO J G. Proceedings of SPIE 11630. Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV. [S.l.]:SPIE,2021,1163012:1-9.
[48] LIU T T, SUN Y F, ZHANG X D. Denoising of Fourier domain quantum optical coherence tomography spectrums based on deep-learning methods [J]. Optics Continuum,2022,1(4):705-717.
[49] CHEN Y Y, LEóN-MONTIEL R D J,CHEN L X. Quantum interferometric two-photon excitation spectroscopy [J]. New Journal of Physics,2022,24(11):113014.
[50] CHEN Y Y, CHEN L X. Quantum Wiener-Khinchin theorem for spectral-domain optical coherence tomography [J]. Physical Review Applied,2022,18(1):014077.
[51] JIN R B, SHIMIZU R. Extended Wiener-Khinchin theorem for quantum spectral analysis [J]. Optica,2018,5(2):93-98.
[52] YEPIZ-GRACIANO P, IBARRA-BORJA Z, RAMíREZ ALARCóN R,et al. Quantum optical coherence microscopy for bioimaging applications [J]. Physical Review Applied,2022,18(3):034060.


相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-06-04
基金项目:国家自然科学基金(12074299,11704290)
作者简介:王宏伟,硕士研究生。Email:whw8063@foxmai.com
*通信作者:郝向英,博士,副教授。Email:xyhao.321@163.com
金锐博,博士,教授。Email:jin@wit.edu.cn
引文格式:王宏伟,郝向英,金锐博. 量子光学相干层析术的研究进展[J]. 武汉工程大学学报,2025,47(1):64-74.
更新日期/Last Update: 2025-03-12