|本期目录/Table of Contents|

[1]徐章燕,闫志国*,侯森森,等.基于分子模拟的MIL-101吸附环境污染物研究进展[J].武汉工程大学学报,2025,47(02):127-134.[doi:10.19843/j.cnki.CN42-1779/TQ.202406016]
 XU Zhangyan,YAN Zhiguo*,HOU Sensen,et al.Progress in absorption of environmental pollutants by MIL-101 based on molecular simulation[J].Journal of Wuhan Institute of Technology,2025,47(02):127-134.[doi:10.19843/j.cnki.CN42-1779/TQ.202406016]
点击复制

基于分子模拟的MIL-101吸附环境污染物研究进展
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年02期
页码:
127-134
栏目:
化学与化学工程
出版日期:
2025-05-09

文章信息/Info

Title:
Progress in absorption of environmental pollutants by MIL-101 based on molecular simulation
文章编号:
1674 - 2869(2025)02 - 0127 - 08
作者:
1. 武汉工程大学化工与制药学院,绿色化工过程教育部重点实验室,湖北 武汉 430205;
2. 武汉东昌仓贮技术有限公司,湖北 武汉 430073
Author(s):
1. School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology;Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan 430205,China;
2. Wuhan Dongchang Storage Tech Co., Ltd. Wuhan 430073, China

关键词:
Keywords:
分类号:
X703;TQ424
DOI:
10.19843/j.cnki.CN42-1779/TQ.202406016
文献标志码:
A
摘要:
环境污染对人类健康、生态系统和经济发展产生了巨大影响,因此,研究如何去除污染物成为重要课题。MIL-101因其高比表面积、巨大的晶胞体积、优异的热稳定性和众多不饱和活性位点等特点,被视为一种有前途的吸附剂。本文系统综述了分子模拟技术在MIL-101吸附污染物研究中的应用进展,概述了研究人员为弥补MIL-101吸附污染物实验中仪器检出限和分辨率不足等局限性,利用分子模拟为不同污染物系统筛选吸附材料,重点归纳了基于分子模拟MIL-101吸附剂表面的微观结构、污染物分子的结构特征、吸附过程的相互作用力,通过吸附剂和污染物之间的运动轨迹和动力学行为分析吸附速率、平衡吸附量等动力学参数。以期为使用分子模拟手段研究和开发改性MIL-101提供思路及方法。
Abstract:
Environmental pollution has endangered human health, ecosystems and economic development making the study of how to remove pollutants in the environment an important research topic. MIL-101 is a promising adsorbent due to its high specific surface area, large unit cell volume, excellent thermal stability and numerous unsaturated active sites. In view of instrument detection limits and insufficient resolution in the experiment of MIL-101 adsorbing pollutants, molecular simulation technology was used to screen adsorption materials for different pollutant systems. This paper systematically reviews the applications of molecular simulation technology in the research of MIL-101 adsorbing pollutants, focusing on the microscopic structure of the adsorbent, the structural characteristics of pollutant molecules, the interactions in the adsorption process, and discusses how to analyze kinetic parameters such as adsorption rate and equilibrium adsorption capacity through the motion trajectories and kinetic behaviors of the adsorbent and pollutants. The aim is to provide ideas and methods for using molecular simulation to study and develop modified MIL-101.

参考文献/References:

[1] B[A]RBULESCU A, DUMITRIU C ?, POPESCU-BODORIN N J A. Assessing atmospheric pollution and its impact on the human health [J]. Atmosphere, 2022,13: 938.
[2] BABUJI P, THIRUMALAISAMY S, DURAISAMY K, et al. Human health risks due to exposure to water pollution: a review[J]. Water, 2023, 15: 2532.
[3] GANIYU S A, SULEIMAN M A, AL-AMRANI W A, et al. Adsorptive removal of organic pollutants from contaminated waters using zeolitic imidazolate framework composites: a comprehensive and up-to-date review[J]. Separation and Purification Technology, 2023, 318: 123765.
[4] ANFAR Z, AIT AHSAINE H, ZBAIR M, et al. Recent trends on numerical investigations of response surface methodology for pollutants adsorption onto activated carbon materials: a review[J]. Critical Reviews in Environmental Science and Technology, 2020,50(10):1043-1084.
[5] DIAGBOYA P N E, DIKIO E D. Silica-based mesoporous materials; emerging designer adsorbents for aqueous pollutants removal and water treatment[J]. Microporous and Mesoporous Materials, 2018, 266: 252-267.
[6] WALKER G C, KONDA S S M, MAJI T K, et al. Preface to the "metal-organic frameworks: fundamental study and applications" joint virtual issue[J]. Langmuir, 2020, 36: 14901-14903.
[7] ZHENG S T, WU T, CHOU C T, et al. Development of composite inorganic building blocks for MOFs[J]. Journal of the American Chemical Society, 2012, 134: 4517-4520.
[8] YU X L, RYADUN A A, POTAPOV A S, et al. Ultra-low limit of luminescent detection of gossypol by terbium(III)-based metal-organic framework[J]. Journal of Hazardous Materials, 2023, 452: 131289.
[9] DROUT R J, ROBISON L, CHEN Z J, et al. Zirconium metal-organic frameworks for organic pollutant adsorption[J]. Trends in Chemistry, 2019, 1(3): 304-317.
[10] LI S Q,CHEN Y F,PEI X K,et al. Water purification: adsorption over metal-organic frameworks[J]. Chinese Journal of Chemistry, 2016, 34: 175-185.
[11] SARKER M, SONG J Y, JHUNG S H. Adsorption of organic arsenic acids from water over functionalized metal-organic frameworks[J]. Journal of Hazardous Materials, 2017, 335: 162-169.
[12] ALHUMAIMESS M S. Metal-organic frameworks and their catalytic applications[J]. Journal of Saudi Chemical Society, 2020, 24: 461-473.
[13] LI H, LI L B, LIN R B, et al. Porous metal-organic frameworks for gas storage and separation: status and challenges[J]. EnergyChem, 2019, 1(1): 100006.
[14] FéREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area [J]. Science, 2005, 309(5743): 2040-2042.
[15] SHADMEHR J, SEDAGHATI F, ZEINALI S. Efficient elimination of propiconazole fungicide from aqueous environments by nanoporous MIL-101(Cr): process optimization and assessment[J]. International Journal of Environmental Science and Technology, 2021, 18: 2937-2954.
[16] LI Z C, LIU X M, JIN W, et al. Adsorption behavior of arsenicals on MIL-101(Fe): the role of arsenic chemical structures[J]. Journals of Colloid and Interface Science, 2019, 554: 692-704.
[17] MIRSOLEIMANI-AZIZI S M, SETOODEH P, SAMIMI F, et al. Diazinon removal from aqueous media by mesoporous MIL-101(Cr) in a continuous fixed-bed system[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 4653-4664.
[18] MINH THANH H T, THU PHUONG T T, LE HANG P T, et al. Comparative study of Pb(II) adsorption onto MIL-101 and Fe-MIL-101 from aqueous solutions[J]. Journal of Environmental Chemical Engineering, 2018, 6: 4093-4102.
[19] JOSEPH L, SAHA M, KIM S, et al. Removal of Cu2+, Cd2+, and Pb2+ from aqueous solution by fabricated MIL-100(Fe) and MIL-101(Cr): experimental and molecular modeling study[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106663.
[20] CHEN M L, ZHOU S Y, XU Z, et al. Metal-organic frameworks of MIL-100(Fe, Cr) and MIL-101(Cr) for aromatic amines adsorption from aqueous solutions[J]. Molecules, 2019, 24(20): 3718.
[21] G?KIRMAK S?[G]üT E. Superior adsorption efficiency of MIL-101(Cr) and Nano-MIL-101(Cr) in anionic and cationic dye removal from aqueous solution[J]. ChemistrySelect, 2023, 8: 20500.
[22] ZHENG Y, CHU F, ZHANG B, et al. Ultrahigh adsorption capacities of carbon tetrachloride on MIL-101 and MIL-101/graphene oxide composites[J]. Microporous and Mesoporous Materials, 2018, 263: 71-76.
[23] WANG H, HAO Y, LIU Q, et al. Enhanced regenerability of metal-organic frameworks adsorbents: influence factors and improved methods[J]. Journal of Environmental Chemical Engineering, 2022, 10: 108737.
[24] ISIYAKA H A, JUMBRI K, SAMBUDI N S, et al. Removal of 4-chloro-2-methylphenoxyacetic acid from water by MIL-101(Cr) metal-organic framework: kinetics, isotherms and statistical models[J]. Royal Society Open Science, 2021, 8: 201553.
[25] 石杰, 尹艺静, 孙桂茹, 等. MIL-101(Fe)的制备及其对亚甲基蓝的快速高效吸附[J]. 当代化工研究, 2022(21): 41-43.
[26] DONG X Q, FAN Q, HAO W Z, et al. Adsorption and separation of hexane isomers in metal-organic frameworks (MOFs): a computational study[J]. Computational and Theoretical Chemistry, 2021, 1197: 113164.
[27] CHIBANI S, BADAWI M, LOISEAU T, et al. A DFT study of RuO4 interactions with porous materials: metal-organic frameworks (MOFs) and zeolites[J]. Physical Chemistry Chemical Physics, 2018, 20(24):16770-16776.
[28] BIGDELI A, KHORASHEH F, TOURANI S, et al. Molecular simulation study of the adsorption and diffusion properties of terephthalic acid in various metal organic frameworks[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 30: 1643-1652.
[29] DEGAGA G D, PANDEY R, GUPTA C, et al. Tailoring of the electronic property of Zn-BTC metal-organic framework via ligand functionalization: an ab initio investigation[J]. RSC Advances,2019, 9(25): 14260-14267.
[30] ERUCAR I, KESKIN S. High-throughput molecular simulations of metal organic frameworks for CO2 separation: opportunities and challenges[J]. Frontiers in Materials, 2018, 5: 00004.
[31] BAE Y S, SNURR R Q. Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angewandte Chemie (International Edition), 2011, 50: 11586-11596.
[32] WILLEMS T F,RYCROFT C H, KAZI M, et al. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials[J]. Microporous and Mesoporous Materials, 2012, 149: 134-141.
[33] OJHA A, TIWARY D, ORAON R, et al. Degrada-tions of endocrine-disrupting chemicals and pharmaceutical compounds in wastewater with carbon-based nanomaterials: a critical review[J]. Environmental Science and Pollution Research, 2021, 28: 30573-30594.
[34] SEDIGHI M, TALAIE M R, SABZYAN H, et al. A computational investigation on the roles of binding affinity and pore size on CO2/N2 overall adsorption process performance of MOFs through modifying MIL-101 structure[J]. Sustainable Materials and Technologies, 2023, 38: e00701.
[35] POURREZA A, ASKARI S, RASHIDI A, et al. Highly efficient SO3Ag-functionalized MIL-101(Cr) for adsorptive desulfurization of the gas stream: experimental and DFT study[J]. Chemical Engineering Journal, 2019, 363: 73-83.
[36] SHAO Y M, WANG S S, HUANG L L, et al. Adsorption and diffusion of CH4, N2, and their mixture in MIL-101(Cr): a molecular simulation study[J]. Journal of Chemical & Engineering Data, 2024,
[37] ZHANG S W, LIN Y L, LI Q, et al. Remarkable performance of N-doped carbonization modified MIL-101 for low-concentration benzene adsorption[J]. Separation and Purification Technology, 2022, 289: 120784.
[38] ZHANG D C, LIU J, WANG C, et al. Application of metal-organic frameworks in the purification of indoor hexanal: experiments and DFT calculations[J]. Building and Environment, 2020, 182: 107095.
[39] LI J, WANG L J, LIU Y Q, et al. Removal of berberine from wastewater by MIL-101(Fe): performance and mechanism[J]. ACS Omega, 2020, 5: 27962-27971.
[40] LUAN X, SHAH S J, YU X, et al. Dual positive charging sites for MIL-101 enhanced adsorption of toluene under high humidity conditions: experimental and theoretical studies[J]. Chemical Engineering Journal, 2024, 479: 147675.
[41] TEHRANI N H M H, ALIVAND M S, KAMALI A, et al. Seed-mediated synthesis of a modified micro-mesoporous MIL-101(Cr) for improved benzene and toluene adsorption at room conditions[J]. Journal of Environmental Chemical Engineering, 2023, 11: 109558.
[42] QUINTERO-áLVAREZ F G, MENDOZA- CASTILLO D I, ROJAS-MAYORGA C K, et al. Mechanism, interfacial interactions and thermodynamics of the monolayer adsorption of trace geogenic pollutants from water using mil metal-organic frameworks: fluorides and arsenates[J]. Journal of Molecular Liquids, 2023, 380: 121665.
[43] JIA D, LI Y, CAI H, et al. MIL-101(Fe) metal-organic framework nanoparticles functionalized with amino groups for Cr(VI) capture[J]. ACS Applied Nano Materials, 2023, 6: 6820-6830.
[44] QIN Y, ZHANG M, ZHANG F, et al. Achieving ultrafast and highly selective capture of radiotoxic tellurite ions on iron-based metal-organic frameworks through coordination bond-dominated conversion[J]. Journal of Hazardous Materials, 2024, 468: 133780.
[45] KESHAVARZ F, KAVUN V, VAN DER VEEN M A, et al. Molecular-level understanding of highly selective heavy rare earth element uptake by organophosphorus modified MIL-101(Cr)[J]. Chemical Engineering Journal, 2022, 440: 135905.
[46] FAN S, LU X R, LI H L, et al. Efficient removal of organophosphate esters by ligand functionalized MIL-101(Fe): modulated adsorption and DFT calcula-tions[J]. Chemosphere, 2022, 302: 134881.
[47] SEDIGHI M, TALAIE M R, SABZYAN H, et al. Evaluating equilibrium and kinetics of CO2 and N2 adsorption into amine-functionalized metal-substituted MIL-101 frameworks using molecular simulation[J]. Fuel, 2022, 308: 121965.
[48] ZHANG Z Z, WANG H, LI J Y, et al. Experimental measurement of the adsorption equilibrium and kinetics of CO2 in chromium-based metal-organic framework MIL-101[J]. Adsorption Science & Technology, 2013, 31(10): 903-916.
[49] LIU D, LIN Y S, LI Z, et al. Adsorption and separation of CH4/H2 in MIL-101s by molecular simulation study[J]. Chemical Engineering Science, 2013, 98: 246-254.
[50] ZHI G, QI X J, LI Y K, et al. Efficient treatment of smelting wastewater: 3D nickel foam@ MOF shatters the previous limitation, enabling high-throughput selective capture of arsenic to form non-homogeneous nuclei[J]. Separation and Purification Technology, 2024, 328: 124927.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-06-06
基金项目:国家自然科学基金(22275124);武汉工程大学研究生教育创新基金(CX2023014)
作者简介:徐章燕,硕士研究生。Email:xuxuxu62@163.com
*通信作者:闫志国,博士,教授。Email:samanyan@163.com
引文格式:徐章燕,闫志国,侯森森,等. 基于分子模拟的MIL-101吸附环境污染物研究进展[J]. 武汉工程大学学报,2025,47(2):127-134.
更新日期/Last Update: 2025-05-08