[1] CHEN Z, YAO D C, CHU C C, et al. Photocatalytic H2O2 production systems: design strategies and environmental applications [J]. Chemical Engineering Journal, 2023, 451(Part 1): 138489.
[2] LI X X, WU K J, CHEN S, et al. Hydrogen peroxide-mediated tandem catalysis for electrifying chemical synthesis [J]. Chem Catalysis, 2024, 4(8) : 100997.
[3] LI C, WANG H T, XU X Q, et al. Anionic polyelectrolyte modified perovskite composite activated hydrogen peroxide to treat high-salinity organic wastewater: dual effects of electrostatic interaction [J]. Chemical Engineering Journal, 2024, 488: 151033.
[4] MUJTABA J, KUZIN A, CHEN G X, et al. Synergistic integration of hydrogen peroxide powered valveless micropumps and membraneless fuel cells: a comprehensive review [J]. Advanced Materials Technologies, 2024, 9(14) : 2302052.
[5] 潘智勇, 邢定峰. 过氧化氢市场现状和技术发展趋势 [J]. 现代化工, 2021, 41(4) : 11-16.
[6] GAO G H,TIAN Y N,GONG X X,et al. Advances in the production technology of hydrogen peroxide [J]. Chinese Journal of Catalysis,2020,41(7):1039-1047.
[7] 杨晓茹, 邓明杨, 张晓昕. 蒽醌法生产过氧化氢用催化剂的研究进展 [J]. 应用化工, 2023, 52(5) : 1508-1513,1518.
[8] REN L T, YANG X N, SUN X, et al. Cascaded *CO-*COH intermediates on a nonmetallic plasmonic photocatalyst for CO2-to-C2H6 with 90.6% selectivity [J]. Angewandte Chemie (International Edition), 2024, 63(30) : e202404660.
[9] BAUR E,NEUWEILER C. über photolytische bildung von hydroperoxyd [J]. Helvetica Chimica Acta, 1927, 10(1) : 901-907.
[10] 杨杰, 陈香, 刘昌昊, 等. 光催化技术在能源环境中的发展与应用 [J]. 太阳能, 2024 (7): 50-61.
[11] TAYLOR D, DALGARNO S J, XU Z T, et al. Conjugated porous polymers: incredibly versatile materials with far-reaching applications[J]. Chemical Society Reviews,2020,49(12):3981-4042.
[12] XU Y H, JIN S B, XU H, et al. Conjugated microporous polymers: design, synthesis and application [J]. Chemical Society Reviews, 2013, 42(20) : 8012-8031.
[13] NOSAKA Y, NOSAKA A Y. Generation and detection of reactive oxygen species in photo-catalysis [J]. Chemical Reviews,2017,117(17):11302-11336.
[14] ZHAO S, ZHAO X. Insights into the role of singlet oxygen in the photocatalytic hydrogen peroxide production over polyoxometalates-derived metal oxides incorporated into graphitic carbon nitride framework [J]. Applied Catalysis B: Environmental, 2019, 250: 408-418.
[15] LIU L L, CHEN F, WU J H, et al. Edge electronic vacancy on ultrathin carbon nitride nanosheets anchoring O2 to boost H2O2 photoproduction [J]. Applied Catalysis B: Environmental, 2022, 302: 120845.
[16] ZHANG P, TONG Y W, LIU Y, et al. Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride [J]. Angewandte Chemie (International Edition), 2020, 59(37) : 16209-16217.
[17] WANG J, YANG L J, ZHANG L. Constructed 3D hierarchical micro-flowers CoWO4@Bi2WO6 Z-scheme heterojunction catalyzer: two-channel photocatalytic H2O2 production and antibiotics degradation [J]. Chemical Engineering Journal, 2021, 420: 127639.
[18] CHU C H, HUANG D H, ZHU Q H, et al. Electronic tuning of metal nanoparticles for highly efficient photocatalytic hydrogen peroxide production [J]. ACS Catalysis, 2019, 9(1) : 626-631.
[19] CHEN L, CHEN C, YANG Z, et al. Simultaneously tuning band structure and oxygen reduction pathway toward high-efficient photocatalytic hydrogen peroxide production using cyano-rich graphitic carbon nitride [J]. Advanced Functional Materials, 2021, 31(46) : 2105731.
[20] CHAOUI N, TRUNK M, DAWSON R, et al. Trends and challenges for microporous polymers [J]. Chemical Society Reviews,2017,46(11):3302-3321.
[21] ZHANG W Y, ZUO H Y, CHENG Z H, et al. Macroscale conjugated microporous polymers: controlling versatile functionalities over several dimensions [J]. Advanced Materials, 2022, 34(18) : 2104952.
[22] LUO Y, ZHANG B P, LIU C C, et al. Sulfone-modified covalent organic framewoeks enabling efficient photocatalytic hydrogen peroxide generation via one-step two-electron O2 reduction [J]. Angewandte Chemie (International Edition), 2023, 62(26) : e202305355.
[23] KIM H I, CHOI Y, HU S, et al. Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride [J]. Applied Catalysis B: Environmental, 2018, 229: 121-129.
[24] HU S Z, QU X Y, LI P, et al. Photocatalytic oxygen reduction to hydrogen peroxide over copper doped graphitic carbon nitride hollow microsphere: the effect of Cu(I)-N active sites [J]. Chemical Engineering Journal, 2018, 334: 410-418.
[25] LI Y J, MA F H, ZHENG L R, et al. Boron containing metal-organic framework for highly selective photocatalytic production of H2O2 by promoting two-electron O2 reduction [J]. Materials Horizons, 2021, 8(10) : 2842-2850.
[26] GAO T T, QIU L, XIE M H, et al. Defect-stabilized and oxygen-coordinated iron single-atom sites facilitate hydrogen peroxide electrosynthesis [J]. Materials Horizons, 2023, 10(10) : 4270-4277.
[27] LI S N, DONG G H, HAILILI R, et al. Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies [J]. Applied Catalysis B: Environmental, 2016, 190: 26-35.
[28] CAO X X, HAN Y C. Control over the aggregated structure of donor-acceptor conjugated polymer films for high-mobility organic field-effect transistors [J]. Aggregate, 2024, 5(3) : e501.
[29] LEE J, LEE S M, CHEN S S, et al. Organic photovoltaics with multiple donor-acceptor pairs [J]. Advanced Materials, 2019, 31(20) : 1804762.
[30] WANG L S, ZHU W G. Organic donor-acceptor systems for photocatalysis [J]. Advanced Science, 2024, 11(10) : 2307227.
[31] LIU W, ZHANG H T, LIANG S T, et al. The synthesis of a multiple D-A conjugated macrocycle and its application in organic photovoltaic [J]. Angewandte Chemie (International Edition), 2023, 62(48) : e202311645.
[32] ZHANG S, ZHANG Y P, LIN Y, et al. Donor-acceptor type of triazine-based conjugated organic polymers with excellent charge separation for efficient photocatalytic production of hydrogen peroxide [J]. Separation and Purification Technology, 2025, 354(Part 7): 129388.
[33] LUO Z P, CHEN X W, HU Y Y, et al. Side-chain molecular engineering of triazole-based donor-acceptor polymeric photocatalysts with strong electron push-pull interactions [J]. Angewandte Chemie (International Edition),2023,62(30) : e202304875.
[34] CHANG J N, LI Q, SHI J W, et al. Oxidation-reduction molecular junction covalent organic frameworks for full reaction photosynthesis of H2O2 [J]. Angewandte Chemie (International Edition), 2023, 62(9) : e202218868.
[35] GAO J, YANG S, WEI P P, et al. Enhanced photocatalytic H2O2 production through synergistic double-vacancy engineering in Z-scheme TiO2-x/g-C3N4-x heterojunction [J]. Separation and Purification Technology, 2025,354(Part 1):128685.
[36] ZHAO D M, YANG Y X, BINAS V, et al. Interface engineering of Z-scheme heterojunction for photocatalytic water splitting [J/OL]. Fundamental Research, (2024-06-13)[2024-11-18].https://doi.org/10.1016/j.fmre.2024.05.017.
[37] YANG Y P, LI Y, MA X Q, et al. Direct Z-scheme WO3/covalent organic framework (COF) heterostructure for enhanced photocatalytic hydrogen peroxide production in water [J]. Catalysis Science & Technology, 2023, 13(19) : 5599-5609.
[38] 邓延平, 白浚贤, 姜志民, 等. 阶梯型异质结光催化研究进展 [J]. 武汉工程大学学报, 2023, 45(2) : 126-138.
[39] KHAN S, QAISER M A, QURESHI W A, et al. Constructing interfacial B-P bonding bridge to promote S-scheme charge migration within heteroatom-doped carbon nitride homojunction for efficient H2O2 photosynthesis [J]. ACS Applied Materials & Interfaces, 2025, 17(4) : 6249-6259.
[40] ZHANG Y, QIU J Y, ZHU B C, et al. ZnO/COF S-scheme heterojunction for improved photocatalytic H2O2 production performance [J]. Chemical Engineering Journal, 2022, 444: 136584.
[41] LI X Q, CHEN D Y, LI N J, et al. Efficient photocatalytic hydrogen peroxide production induced by the strong internal electric field of all-organic S-scheme heterojunction [J]. Journal of Colloid and Interface Science, 2023, 633: 691-702.
[42] CHENG H, Lü H F, CHENG J, et al. Rational design of covalent heptazine frameworks with spatially separated redox centers for high-efficiency photocatalytic hydrogen peroxide production [J]. Advanced Materials, 2022, 34(7) : 2107480.
[43] CHEN D, CHEN W B, WU Y T, et al. Covalent organic frameworks containing dual O2 reduction centers for overall photosynthetic hydrogen peroxide production [J]. Angewandte Chemie (International Edition), 2023, 62(9) : e202217479.
[44] YE Y X, PAN J H, SHEN Y, et al. A solar-to-chemical conversion efficiency up to 0.26% achieved in ambient conditions [J]. Proceedings of the National Academy of Sciences,2021,118(46): e2115666118.
[45] YAN H J, SHEN M H, SHEN Y, et al. Spontaneous exciton dissociation in organic photocatalyst under ambient conditions for highly efficient synthesis of hydrogen peroxide [J]. Proceedings of the National Academy of Sciences,2022,119(22) : e2202913119.