|本期目录/Table of Contents|

[1]张 琦,汪 锋*.共轭聚合物光催化合成过氧化氢改性策略的研究进展[J].武汉工程大学学报,2025,47(02):135-142.[doi:10.19843/j.cnki.CN42-1779/TQ.202411011]
 ZHANG Qi,WANG Feng*.Research progress on modification strategies of conjugated polymers for photocatalytic production of hydrogen peroxide[J].Journal of Wuhan Institute of Technology,2025,47(02):135-142.[doi:10.19843/j.cnki.CN42-1779/TQ.202411011]
点击复制

共轭聚合物光催化合成过氧化氢改性策略的研究进展
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年02期
页码:
135-142
栏目:
化学与化学工程
出版日期:
2025-05-09

文章信息/Info

Title:
Research progress on modification strategies of conjugated polymers for photocatalytic production of hydrogen peroxide
文章编号:
1674 - 2869(2025)02 - 0135 - 08
作者:
武汉工程大学化工与制药学院,新型反应器与绿色化学工艺湖北省重点实验室,湖北 武汉 430205
Author(s):
Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology,
School of Chemical Engineering and Pharmacy,Wuhan Institute of Technology, Wuhan 430205, China
关键词:
Keywords:
分类号:
O643.3;O644.1;TQ123.6
DOI:
10.19843/j.cnki.CN42-1779/TQ.202411011
文献标志码:
A
摘要:
过氧化氢(H2O2)的传统合成方法存在能耗高、安全隐患大等问题。光催化合成H2O2具有安全、环保和节能等优势,符合可持续发展要求,极具发展潜力。共轭聚合物作为典型的光催化材料,通过结构改性提升其光催化性能已成为解决该问题的一个途径。基于光催化合成H2O2的机理,综述了共轭聚合物改性策略在光催化领域的研究进展,重点分析了表面改性、供体-受体结构构建、异质结体系构筑、催化位点调控等改性策略对光催化合成H2O2性能的影响。鉴于共轭聚合物存在电子-空穴对易复合问题,提出优化H2O2生成途径及开发气-液-固三相光催化体系是未来共轭聚合物光催化生成H2O2的主要研究方向,为设计出高效、绿色、稳定的光催化剂提供新思路。
Abstract:
Traditional synthesis methods of hydrogen peroxide (H2O2) have problems such as high energy consumption and safety hazards. Photocatalytic synthesis of H2O2 has the advantages of being safe, environment-friendly and energy efficient,meeting the requirements of sustainable development,and showing great development potential. As typical photocatalytic materials, conjugated polymers have become an approach to solving these problems by enhancing their photocatalytic properties through structural modification. Based on the mechanism of photocatalytic synthesis of H2O2, this review summarizes the research progress in modification strategies of conjugated polymers in the field of photocatalysis, focusing on the effects of surface modification, donor-acceptor structure construction, heterojunction system construction, and catalytic site regulation on the performance of photocatalytic synthesis of H2O2. Given that conjugated polymers are prone to electron-hole pair recombination, optimizing H2O2 generation pathway and developing gas-liquid-solid three-phase photocatalytic system are proposed as the main research directions for photocatalytic H2O2 generation with conjugated polymers in the future, providing new ideas for designing efficient, green and stable photocatalysts.

参考文献/References:

[1] CHEN Z, YAO D C, CHU C C, et al. Photocatalytic H2O2 production systems: design strategies and environmental applications [J]. Chemical Engineering Journal, 2023, 451(Part 1): 138489.
[2] LI X X, WU K J, CHEN S, et al. Hydrogen peroxide-mediated tandem catalysis for electrifying chemical synthesis [J]. Chem Catalysis, 2024, 4(8) : 100997.
[3] LI C, WANG H T, XU X Q, et al. Anionic polyelectrolyte modified perovskite composite activated hydrogen peroxide to treat high-salinity organic wastewater: dual effects of electrostatic interaction [J]. Chemical Engineering Journal, 2024, 488: 151033.
[4] MUJTABA J, KUZIN A, CHEN G X, et al. Synergistic integration of hydrogen peroxide powered valveless micropumps and membraneless fuel cells: a comprehensive review [J]. Advanced Materials Technologies, 2024, 9(14) : 2302052.
[5] 潘智勇, 邢定峰. 过氧化氢市场现状和技术发展趋势 [J]. 现代化工, 2021, 41(4) : 11-16.
[6] GAO G H,TIAN Y N,GONG X X,et al. Advances in the production technology of hydrogen peroxide [J]. Chinese Journal of Catalysis,2020,41(7):1039-1047.
[7] 杨晓茹, 邓明杨, 张晓昕. 蒽醌法生产过氧化氢用催化剂的研究进展 [J]. 应用化工, 2023, 52(5) : 1508-1513,1518.
[8] REN L T, YANG X N, SUN X, et al. Cascaded *CO-*COH intermediates on a nonmetallic plasmonic photocatalyst for CO2-to-C2H6 with 90.6% selectivity [J]. Angewandte Chemie (International Edition), 2024, 63(30) : e202404660.
[9] BAUR E,NEUWEILER C. über photolytische bildung von hydroperoxyd [J]. Helvetica Chimica Acta, 1927, 10(1) : 901-907.
[10] 杨杰, 陈香, 刘昌昊, 等. 光催化技术在能源环境中的发展与应用 [J]. 太阳能, 2024 (7): 50-61.
[11] TAYLOR D, DALGARNO S J, XU Z T, et al. Conjugated porous polymers: incredibly versatile materials with far-reaching applications[J]. Chemical Society Reviews,2020,49(12):3981-4042.
[12] XU Y H, JIN S B, XU H, et al. Conjugated microporous polymers: design, synthesis and application [J]. Chemical Society Reviews, 2013, 42(20) : 8012-8031.
[13] NOSAKA Y, NOSAKA A Y. Generation and detection of reactive oxygen species in photo-catalysis [J]. Chemical Reviews,2017,117(17):11302-11336.
[14] ZHAO S, ZHAO X. Insights into the role of singlet oxygen in the photocatalytic hydrogen peroxide production over polyoxometalates-derived metal oxides incorporated into graphitic carbon nitride framework [J]. Applied Catalysis B: Environmental, 2019, 250: 408-418.
[15] LIU L L, CHEN F, WU J H, et al. Edge electronic vacancy on ultrathin carbon nitride nanosheets anchoring O2 to boost H2O2 photoproduction [J]. Applied Catalysis B: Environmental, 2022, 302: 120845.
[16] ZHANG P, TONG Y W, LIU Y, et al. Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride [J]. Angewandte Chemie (International Edition), 2020, 59(37) : 16209-16217.
[17] WANG J, YANG L J, ZHANG L. Constructed 3D hierarchical micro-flowers CoWO4@Bi2WO6 Z-scheme heterojunction catalyzer: two-channel photocatalytic H2O2 production and antibiotics degradation [J]. Chemical Engineering Journal, 2021, 420: 127639.
[18] CHU C H, HUANG D H, ZHU Q H, et al. Electronic tuning of metal nanoparticles for highly efficient photocatalytic hydrogen peroxide production [J]. ACS Catalysis, 2019, 9(1) : 626-631.
[19] CHEN L, CHEN C, YANG Z, et al. Simultaneously tuning band structure and oxygen reduction pathway toward high-efficient photocatalytic hydrogen peroxide production using cyano-rich graphitic carbon nitride [J]. Advanced Functional Materials, 2021, 31(46) : 2105731.
[20] CHAOUI N, TRUNK M, DAWSON R, et al. Trends and challenges for microporous polymers [J]. Chemical Society Reviews,2017,46(11):3302-3321.
[21] ZHANG W Y, ZUO H Y, CHENG Z H, et al. Macroscale conjugated microporous polymers: controlling versatile functionalities over several dimensions [J]. Advanced Materials, 2022, 34(18) : 2104952.
[22] LUO Y, ZHANG B P, LIU C C, et al. Sulfone-modified covalent organic framewoeks enabling efficient photocatalytic hydrogen peroxide generation via one-step two-electron O2 reduction [J]. Angewandte Chemie (International Edition), 2023, 62(26) : e202305355.
[23] KIM H I, CHOI Y, HU S, et al. Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride [J]. Applied Catalysis B: Environmental, 2018, 229: 121-129.
[24] HU S Z, QU X Y, LI P, et al. Photocatalytic oxygen reduction to hydrogen peroxide over copper doped graphitic carbon nitride hollow microsphere: the effect of Cu(I)-N active sites [J]. Chemical Engineering Journal, 2018, 334: 410-418.
[25] LI Y J, MA F H, ZHENG L R, et al. Boron containing metal-organic framework for highly selective photocatalytic production of H2O2 by promoting two-electron O2 reduction [J]. Materials Horizons, 2021, 8(10) : 2842-2850.
[26] GAO T T, QIU L, XIE M H, et al. Defect-stabilized and oxygen-coordinated iron single-atom sites facilitate hydrogen peroxide electrosynthesis [J]. Materials Horizons, 2023, 10(10) : 4270-4277.
[27] LI S N, DONG G H, HAILILI R, et al. Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies [J]. Applied Catalysis B: Environmental, 2016, 190: 26-35.
[28] CAO X X, HAN Y C. Control over the aggregated structure of donor-acceptor conjugated polymer films for high-mobility organic field-effect transistors [J]. Aggregate, 2024, 5(3) : e501.
[29] LEE J, LEE S M, CHEN S S, et al. Organic photovoltaics with multiple donor-acceptor pairs [J]. Advanced Materials, 2019, 31(20) : 1804762.
[30] WANG L S, ZHU W G. Organic donor-acceptor systems for photocatalysis [J]. Advanced Science, 2024, 11(10) : 2307227.
[31] LIU W, ZHANG H T, LIANG S T, et al. The synthesis of a multiple D-A conjugated macrocycle and its application in organic photovoltaic [J]. Angewandte Chemie (International Edition), 2023, 62(48) : e202311645.
[32] ZHANG S, ZHANG Y P, LIN Y, et al. Donor-acceptor type of triazine-based conjugated organic polymers with excellent charge separation for efficient photocatalytic production of hydrogen peroxide [J]. Separation and Purification Technology, 2025, 354(Part 7): 129388.
[33] LUO Z P, CHEN X W, HU Y Y, et al. Side-chain molecular engineering of triazole-based donor-acceptor polymeric photocatalysts with strong electron push-pull interactions [J]. Angewandte Chemie (International Edition),2023,62(30) : e202304875.
[34] CHANG J N, LI Q, SHI J W, et al. Oxidation-reduction molecular junction covalent organic frameworks for full reaction photosynthesis of H2O2 [J]. Angewandte Chemie (International Edition), 2023, 62(9) : e202218868.
[35] GAO J, YANG S, WEI P P, et al. Enhanced photocatalytic H2O2 production through synergistic double-vacancy engineering in Z-scheme TiO2-x/g-C3N4-x heterojunction [J]. Separation and Purification Technology, 2025,354(Part 1):128685.
[36] ZHAO D M, YANG Y X, BINAS V, et al. Interface engineering of Z-scheme heterojunction for photocatalytic water splitting [J/OL]. Fundamental Research, (2024-06-13)[2024-11-18].https://doi.org/10.1016/j.fmre.2024.05.017.
[37] YANG Y P, LI Y, MA X Q, et al. Direct Z-scheme WO3/covalent organic framework (COF) heterostructure for enhanced photocatalytic hydrogen peroxide production in water [J]. Catalysis Science & Technology, 2023, 13(19) : 5599-5609.
[38] 邓延平, 白浚贤, 姜志民, 等. 阶梯型异质结光催化研究进展 [J]. 武汉工程大学学报, 2023, 45(2) : 126-138.
[39] KHAN S, QAISER M A, QURESHI W A, et al. Constructing interfacial B-P bonding bridge to promote S-scheme charge migration within heteroatom-doped carbon nitride homojunction for efficient H2O2 photosynthesis [J]. ACS Applied Materials & Interfaces, 2025, 17(4) : 6249-6259.
[40] ZHANG Y, QIU J Y, ZHU B C, et al. ZnO/COF S-scheme heterojunction for improved photocatalytic H2O2 production performance [J]. Chemical Engineering Journal, 2022, 444: 136584.
[41] LI X Q, CHEN D Y, LI N J, et al. Efficient photocatalytic hydrogen peroxide production induced by the strong internal electric field of all-organic S-scheme heterojunction [J]. Journal of Colloid and Interface Science, 2023, 633: 691-702.
[42] CHENG H, Lü H F, CHENG J, et al. Rational design of covalent heptazine frameworks with spatially separated redox centers for high-efficiency photocatalytic hydrogen peroxide production [J]. Advanced Materials, 2022, 34(7) : 2107480.
[43] CHEN D, CHEN W B, WU Y T, et al. Covalent organic frameworks containing dual O2 reduction centers for overall photosynthetic hydrogen peroxide production [J]. Angewandte Chemie (International Edition), 2023, 62(9) : e202217479.
[44] YE Y X, PAN J H, SHEN Y, et al. A solar-to-chemical conversion efficiency up to 0.26% achieved in ambient conditions [J]. Proceedings of the National Academy of Sciences,2021,118(46): e2115666118.
[45] YAN H J, SHEN M H, SHEN Y, et al. Spontaneous exciton dissociation in organic photocatalyst under ambient conditions for highly efficient synthesis of hydrogen peroxide [J]. Proceedings of the National Academy of Sciences,2022,119(22) : e2202913119.


相似文献/References:

[1]陈志力,高 翔*,刘治田.基于苯并[1,2-b:4,5-b’]二呋喃的宽带隙共轭聚合物的合成与光伏应用[J].武汉工程大学学报,2021,43(06):610.[doi:10.19843/j.cnki.CN42-1779/TQ.202103006]
 CHEN Zhili,GAO Xiang*,LIU Zhitian.Synthesis and Photovoltaic Application of Wide Bandgap Conjugated Polymer Based on Benzo[1,2-b:4,5-b’]Bifuran[J].Journal of Wuhan Institute of Technology,2021,43(02):610.[doi:10.19843/j.cnki.CN42-1779/TQ.202103006]

备注/Memo

备注/Memo:
收稿日期:2024-11-18
基金项目:湖北省教育厅重点项目(D20181505);光电化学材料与器件教育部重点实验室开放基金(JDGD-202003)
作者简介:张 琦,硕士研究生。Email:546828333@qq.com
*通信作者:汪 锋,博士,教授。Email:psfwang@wit.edu.cn
引文格式:张琦,汪锋. 共轭聚合物光催化合成过氧化氢改性策略的研究进展[J]. 武汉工程大学学报,2025,47(2):135-142.
更新日期/Last Update: 2025-05-08