|本期目录/Table of Contents|

[1]郑 博,彭 姣,王 静,等.超亲水-超疏水海绵的制备及其污染物吸附与油水分离[J].武汉工程大学学报,2025,47(02):143-150.[doi:10.19843/j.cnki.CN42-1779/TQ202409015]
 ZHENG Bo,PENG Jiao,WANG Jing,et al.Preparation of a superhydrophilic-superhydrophobic sponge and its application in pollutant adsorption and oil-water separation[J].Journal of Wuhan Institute of Technology,2025,47(02):143-150.[doi:10.19843/j.cnki.CN42-1779/TQ202409015]
点击复制

超亲水-超疏水海绵的制备及其污染物吸附与油水分离
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年02期
页码:
143-150
栏目:
化学与化学工程
出版日期:
2025-05-09

文章信息/Info

Title:
Preparation of a superhydrophilic-superhydrophobic sponge and its application in pollutant adsorption and oil-water separation
文章编号:
1674 - 2869(2025)02 - 0143 - 08
作者:
1. 中南民族大学化学与材料科学学院,湖北 武汉 430074;
2. 催化转化与能源材料化学教育部重点实验室,湖北 武汉 430074;
3. 湖北能源高分子材料工程技术研究中心,湖北 武汉 430074;
4. 临海市工投产业服务有限公司,浙江 临海 317000
Author(s):
1. School of Chemistry and Materials Science, South-Central Minzu University,Wuhan 430074,China;
2. Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education,Wuhan 430074,China;
3. Hubei Engineering Technology Research Centre of Energy Polymer Materials,Wuhan 430074,China;
关键词:
Keywords:
分类号:
O647.3
DOI:
10.19843/j.cnki.CN42-1779/TQ202409015
文献标志码:
A
摘要:
合成一种具有高比表面积和良好生物降解性的环境友好材料,以实现高效油水分离、有机污染物的吸附脱色以及重金属离子处理的目的。以过硫酸铵为引发剂,分别将丙烯酸 (AA)、海藻酸钠 (SA)引入到海绵中。通过以乙酸乙酯为溶剂分散气相SiO2纳米粒子和聚二甲基硅氧烷,超声处理5 min得到均匀分散的超疏水涂料。在海绵的5个表面喷涂制备的超疏水涂料,干燥后得到超亲水-超疏水SA-聚丙烯酸(PAA)-超亲水聚乙烯醇(PVA)海绵。对该表面的接触角、形貌和成分进行表征以证明材料的成功合成。实验发现:超亲水-超疏水海绵对重金属离子Cu2+、Pb2+、Zn2+和Cr3+的最大吸附量分别为102.06、97.37、108.54、117.76 mg/g。此外,超亲水-超疏水SA-PAA-PVA海绵对甲基蓝溶液显示出优异的吸附脱色效果,不同初始质量浓度的甲基蓝溶液经海绵吸附处理后质量浓度均小于0.5 mg/L,该海绵还可用于轻质油水分离。该材料的制备工艺简单、有工业应用的潜力,为解决水污染问题提供了思路。
Abstract:
An environmentally friendly materials with high specific surface area and good biodegradability was synthesized to achieve efficient oil-water separation, adsorption of organic pollutants, decolorization, and treatment of heavy metal ions. Using ammonium persulfate as an initiator, acrylic acid (AA) and sodium alginate (SA) were introduced into the sponge, respectively. A uniformly dispersed superhydrophobic coating was obtained by using ethyl acetate as a solvent to disperse gas-phase SiO2 nanoparticles (NPs) and polydimethylsiloxane (PDMS), followed by ultrasonic treatment for 5 minutes. The prepared superhydrophobic coating was sprayed onto five surfaces of the sponge. After drying, the superhydrophilic - superhydrophobic SA-PAA-PVA sponge was obtained. The contact angle, morphology, and composition of the surface were characterized to prove the successful synthesis of the material. Experimental results showed that the maximum adsorption capacities of this sponge for heavy metal ions (Cu2+, Pb2+, Zn2+ and Cr3+) were 102.06, 97.37, 108.54 and 117.76 mg/g, respectively. In addition, it exhibited excellent adsorption and decolorization effects on methylene blue solution. After methylene blue solutions with different initial mass concentrations were treated with the sponge, the mass concentrations were all less than 0.5 mg/L. The sponge can also be used for light-oil/water separation. With the simple preparation process, the sponge has great potential for industrial applications, providing a new approach to solving water pollution issues.

参考文献/References:

[1] DING Q, LI C, WANG H J, et al. Electrochemical detection of heavy metal ions in water [J]. Chemical Communication, 2021, 57(59): 7215-7231.
[2] FU Z J, JIANG S K, CHAO X Y, et al. Removing miscellaneous heavy metals by all-in-one ion exchange-nanofiltration membrane [J]. Water Research, 2022, 222: 11888.
[3] HAO L T, HE Y Y, SHI C, et al. Biologically removing vanadium(V) from groundwater by agricultural biomass [J]. Journal Environment Management, 2021, 296: 113244.
[4] PEYDAYESH M, MEZZENGA R. Protein nanofibrils for next generation sustainable water purification [J]. Nature Communications, 2021, 12(1): 3248
[5] BERA S P, GODHANIYA M, KOTHARI C. Emerging and advanced membrane technology for wastewater treatment: a review [J]. Journal Basic Microbiology, 2022, 62(314): 245-259.
[6] SHAH M P, COUTO S R. All about wastewater treatment technologies and application options[J]. Clean-Soil Air Water, 2023, 51(3): 2300030.
[7] ADANE T, ADUGNA A T, ALEMAYEHU E. Textile industry effluent treatment techniques [J]. Journal of Chemistry, 2021: 5314404.
[8] SHETH Y, DHARASKAR S, KHALID M, et al. An environment friendly approach for heavy metal removal from industrial wastewater using chitosan based biosorbent: a review [J]. Sustainable Energy Technologies, 2021, 43: 100951.
[9] PENG W J, LI H Q, LIU Y Y, et al. A review on heavy metal ions adsorption from water by graphene oxide and its composites [J]. Journal of Molecular Liquids, 2017, 230: 496-504.
[10] GAO X P, ZHANG Y, ZHAO Y M. Biosorption and reduction of Au (III) to gold nanoparticles by thiourea modified alginate [J]. Carbohydrate Polymers, 2017, 159: 108-115.
[11] GAO X, GUO C, HAO J, et al. Adsorption of heavy metal ions by sodium alginate based adsorbent:a review and new perspectives [J]. International Journal of Biological Macromolecules, 2020, 164: 4423-4434.
[12] MOHANTY N, PATRA B N. Polypyrrole-sodium alginate nanocomposites for enhanced removal of toxic organic and metal pollutants from wastewater [J]. Materials Today Communications, 2023, 34: 105325.
[13] HU Z X, YANG J Y, LIU M X, et al. Amine-functionalized cellulose nanofiber-sodium alginate-Fe(III) porous hollow beads for the efficient removal of Cr(VI) [J]. Cellulose, 2023, 30(6): 3807-3822.
[14] MOMIN Z H, LINGAMDINNE L P, KULKARNI R, et al. Exploring recyclable alginate-enhanced GCN-LDO sponge for U(VI) and Cd (II) removal: insights from batch and column studies [J]. Journal of Hazardous Materials, 2024, 469: 134015.
[15] ZHANG L, SHEN B, ZHENG C, et al. Chitosan/oxidized sodium alginate/Ca2+ hydrogels: synthesis, characterization and adsorption properties [J]. Food Hydrocolloids, 2024, 156: 110368.
[16] ZHANG W, XIN Y, FA Y, et al. SA-DNA hydrogel microspheres for ultra-selective uranyl (VI) extraction from seawater [J]. Chemical Engineering Journal, 2024, 495: 153690.
[17] 陶先露.基于仿沙漠甲壳虫水收集材料的制备与性能研究[D].武汉:中南民族大学,2022.
[18] 王颖,吴江渝,曾小平,等.水污染处理用表面改性海绵的研究进展[J].塑料科技,2024,52(6):144-148.
[19] YANG Y, ZHAO X W, YE L. Facile construction of durable superhydrophobic cellulose paper for oil-water separation [J]. Cellulose, 2023, 30(5): 3255-3265.
[20] SHI Y L,YANG W,FENG X J, et al. Fabrication of superhydrophobic-superoleophilic copper mesh via thermal oxidation and its application in oil-water separation [J]. Applied Surface Science, 2016, 367: 493-499.
[21] ZHU Y R, LI H Q, HUANG W, et al. Facile fabrication of superhydrophobic wood aerogel by vapor deposition method for oil-water separation [J]. Surfaces Interfaces, 2023, 37: 102746.
[22] ZANG Y, SUN H, JING B Y, et al. Efficient superhydrophobic and flame retardant oil/water separation conjugated microporous polymer-coated sponges [J]. Journal of Materials Science, 2023, 58(6): 2935-2949.
[23] ZHANG Q, LI K R, LI J, et al. Fabrication of hierarchically porous superhydrophobic polystyrene foam for self-cleaning, oil absorbent, highly efficient oil-water separation [J]. Chemical Engineering Journal, 2024, 483: 149338.
[24] HU K, LYU H H, DUAN H N, et al. Facilitate the preparation of naturally modified and self-healing superhydrophobic/superoleophilic biochar-based foams for efficient oil-water separation [J]. Journal of Hazardous Materials, 2024, 465: 133489.
[25] ZHU Y, LIU Y S, MOHAMED H F, et al. Rigid, eco-friendly and superhydrophobic SiO2-polyvinyl alcohol composite sponge for durable oil remedia-tion [J]. Chemosphere, 2022, 307: 135990.


相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-09-18
基金项目:国家自然科学基金(52272102);中南民族大学中央高校基本科研业务费专项资金(CZZ23014)
作者简介:郑 博,硕士研究生。Email:2022110277@mail.scuec.edu.cn
*通信作者:金士威,博士,教授。Email:jinsw@mail.scuec.edu.cn
引文格式:郑博,彭姣,王静,等.超亲水-超疏水海绵的制备及其污染物吸附与油水分离[J]. 武汉工程大学学报,2025,47(2):143-150.
更新日期/Last Update: 2025-05-08