|本期目录/Table of Contents|

[1]徐可昕,祝 洋,徐 雪,等.聚酰亚胺/活性炭复合材料的制备及其电化学性能[J].武汉工程大学学报,2025,47(02):167-173.[doi:10.19843/j.cnki.CN42-1779/TQ.202408016]
 XU Kexin,ZHU Yang,XU Xue,et al.Preparation and electrochemical properties of polyimide/activated carbon composites[J].Journal of Wuhan Institute of Technology,2025,47(02):167-173.[doi:10.19843/j.cnki.CN42-1779/TQ.202408016]
点击复制

聚酰亚胺/活性炭复合材料的制备及其电化学性能
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年02期
页码:
167-173
栏目:
材料科学与工程
出版日期:
2025-05-09

文章信息/Info

Title:
Preparation and electrochemical properties of polyimide/activated carbon composites
文章编号:
1674 - 2869(2025)02 - 0167 - 07
作者:
武汉工程大学材料科学与工程学院,湖北 武汉 430205
Author(s):
School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
Keywords:
分类号:
O633
DOI:
10.19843/j.cnki.CN42-1779/TQ.202408016
文献标志码:
A
摘要:
通过苝-3,4,9,10-四羧酸二酐与尿素在N,N-二甲基甲酰胺中的缩聚反应制得聚酰胺酸(PAA),然后将PAA与活性炭(AC)混合并进行热处理,最终获得聚酰亚胺/活性炭(PI/AC)复合材料。通过红外光谱和X射线衍射分析证实,AC不会影响PI的化学结构与排列方式。场发射扫描电子显微镜观察表明,PI/AC具有珊瑚状的三维结构,且AC颗粒均匀地分布在复合体系中。利用循环伏安、交流阻抗和恒电流充放电测试对复合材料的电化学性能进行了研究,结果表明,PI/AC复合材料在0.5 A·g-1电流密度下的比电容为485 F·g-1,显著高于PI(368 F·g-1)和AC(275 F·g-1),这得益于其均衡的电子/离子传导性。此外,PI/AC在1 000次充放电循环后电容保持率为81.3%,显示出优异的循环稳定性。PI/AC复合电极材料可以有效激发PI与AC的协同效应,获得理想的电化学性能。
Abstract:
Polyamide acid (PAA) was synthesized via a polycondensation reaction of perylene-3,4,9,10-tetracarboxylic dianhydride and urea in N, N-dimethylformamide. Then,PAA was mixed with activated carbon (AC) and thermally treated to give the polyimide/activated carbon (PI/AC) composite material. Infrared spectroscopy and X-ray diffraction analyses confirmed that AC does not affect the chemical structure and arrangement of PI. Field emission scanning electron microscopy revealed that PI/AC exhibits a coral-like three-dimensional structure with uniformly distributed AC particles. The electrochemical performance of the composite material was investigated using cyclic voltammetry,electrochemical impedance spectroscopy,and galvanostatic charge-discharge tests. The results showed that the specific capacitance of the PI/AC composite at a current density of 0.5 A·g-1 is 485 F·g-1,significantly higher than that of PI (368 F·g-1) and AC (275 F·g-1). This is attributed to its balanced electron/ion conductivity. Additionally,the PI/AC composite retained 81.3% of its capacitance after 1 000 charge-discharge cycles,demonstrating excellent cycling stability. This study confirmed that the PI/AC composite electrode material effectively harnesses the synergistic effects of PI and AC,achieving ideal electrochemical performance.

参考文献/References:

[1] OYEDOTUN K O,IGHALO J O,AMAKU J F,et al. Advances in supercapacitor development:materials,processes,and applications [J]. Journal of Electronic Materials,2023,52(1):96-129.
[2] SHAH S S, NIAZ F, EHSAN M A,et al. Advanced strategies in electrode engineering and nanomaterial modifications for supercapacitor performance enhancement:a comprehensive review [J]. Journal of Energy Storage,2024,79:110152.
[3] RADHAKRISHNAN S,PATRA A,MANASA G,et al. Borocarbonitride-based emerging materials for supercapacitor applications:recent advances,challenges,and future perspectives [J]. Advanced Science,2024,11(4):2305325.
[4] 武比,秦丽溶,赵建伟,等. CoO@NiMo-O(P)分级复合材料的制备及其超级电容性能[J]. 复合材料学报,2022,39(12):5727-5735.
[5] HUANG J H,DONG X L,GUO Z W,et al. Progress of organic electrodes in aqueous electrolyte for energy storage and conversion [J]. Angewandte Chemie(International Edition),2020,59(42):18322-18333.
[6] HUANG G X, ZHANG Y, WANG L, et al. Fiber-based MnO2/carbon nanotube/polyimide asymmetric supercapacitor [J]. Carbon,2017,125:595-604.
[7] GAO X, CHEN Y, GU C J, et al. Non-conjugated diketone as a linkage for enhancing the rate performance of poly(perylenediimides) [J]. Journal of Materials Chemistry A,2020,8(37):19283-19289.
[8] HALDAR S, RASE D, SHEKHAR P, et al. Incorporating conducting polypyrrole into a polyimide COF for carbon-free ultra-high energy supercapacitor [J]. Advanced Energy Materials,2022,12(34):2200754.
[9] HUANG H B,WU K J, MA R P,et al. Incorporating polyimide cathode materials into porous polyaniline xerogel to optimize the zinc-storage behavior[J]. Advanced Powder Technology,2022,33(12):103878.
[10] JIANG B, HUANG T, YANG P, et al. Solution-processed perylene diimide-ethylene diamine cathodes for aqueous zinc ion batteries [J]. Journal of Colloid and Interface Science,2021,598:36-44.
[11] 肖娴,徐小尘,李琇廷,等. 含聚醚链段聚酰亚胺膜的制备及气体分离性能[J]. 高分子学报,2022,53(5):505-513.
[12] WANG J, LIU H C, DU C Y, et al. Towards high performance polyimide cathode materials for lithium-organic batteries by regulating active-site density,accessibility,and reactivity [J]. eScience,2024,4(4):100224.
[13] YANG Q Y, HUANG J, TU J Y, et al. A micropore-dominant N,P,S-codoped porous carbon originating from hydrogel for high-performance supercapacitors mediated by phytic acid [J]. Microporous and Mesoporous Materials,2021,316:110951.
[14] FU Y Q, WEI Q L, ZHANG G X, et al. High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon [J]. Advanced Energy Materials,2018,8(26):1801445.
[15] HUANG H B,WANG Y C,HU J J, et al. Polyaniline-poly (styrene sulfonate) hydrogel derived hierarchically porous N,S-codoped carbon for high-performance supercapacitors [J]. Journal of Materials Science:Materials in Electronics,2021,32(7):8916-8931.
[16] ZHAI Z Z, REN B, XU Y L, et al. Nitrogen self-doped carbon aerogels from chitin for supercapacitors [J]. Journal of Power Sources,2021,481:228976.
[17] SANTA-CRUZ L A, TAVARES F C, LOGUERCIO L F,et al. Electrochemical impedance spectroscopy:from breakthroughs to functional utility in supercapacitors and batteries:a comprehensive assessment [J]. Physical Chemistry Chemical Physics,2024,26(40):25748-25761.
[18] GUO Z C,WANG J P,MU J B,et al. Ag nanodots-induced interfacial fast electronic/ionic diffusion kinetics of carbon capsule supported CoMn2O4 for high-voltage supercapacitors [J]. Fuel,2024,357(Part B):129818.
[19] 罗剑,田宝妍,吕彦,等. 锰氧化物/N-掺杂碳复合材料的制备及电化学性能研究[J]. 武汉工程大学学报,2024,46(4):382-389.
[20] LIU Y N,LU Y Y,KHAN A H,et al. Redox-bipolar polyimide two-dimensional covalent organic framework cathodes for durable aluminium batteries [J]. Angewandte Chemie(International Edition),2023,62(30):e202306091.
[21] LIU G Q, WANG G R, JIN Z L. Superficially activating strategies to elevate the supercapacitor performance of nano-cube nickel cobalt-Prussian blue[J]. Electrochimica Acta,2024,502:144832.
[22] 何清,牟雨航,孟辰尧,等. CNT@Ni-MOFs的制备及其在超级电容器中的应用[J].武汉工程大学学报,2024,46(3):258-266.


相似文献/References:

[1]魏毅,汤亚飞,明勇.活性炭载Fe2+三维电极法处理染料废水[J].武汉工程大学学报,2009,(09):35.
 WEI Yi,TANG Ya fei,MING Yong.Study on treatment of dyewastewater by using Fe/AC three dimensional electrode method[J].Journal of Wuhan Institute of Technology,2009,(02):35.
[2]贺志丽,贺志霞,陈瑞琴.改性活性炭对水溶液中氟离子的吸附性能[J].武汉工程大学学报,2012,(1):43.
 HE Zhi\|li,HE Zhi\|xia,CHEN Rui\|qin.Adsorption of modified activated carbon to fluoride from aqueous solution[J].Journal of Wuhan Institute of Technology,2012,(02):43.
[3]周旋,左淼,邓光天.黄姜皂素工业固体废弃物的综合利用[J].武汉工程大学学报,2012,(8):54.[doi:103969/jissn16742869201208014]
 ZHOU Xuan,ZUO Miao,DENG Guang tian.Utilization of yam diosrenin industrial solid waste[J].Journal of Wuhan Institute of Technology,2012,(02):54.[doi:103969/jissn16742869201208014]
[4]冯建波.水中刚果红的磁性活性炭纤维素微球法脱除[J].武汉工程大学学报,2014,(10):17.[doi:103969/jissn167428692014010004]
 FENG Jian bo.Removal of Congo red in water by magnetic activated carbon/cellulose microspheres[J].Journal of Wuhan Institute of Technology,2014,(02):17.[doi:103969/jissn167428692014010004]
[5]王国祥,金 灿,王 莹,等.ZnCl2改性活性炭对硫酸根离子的吸附[J].武汉工程大学学报,2019,(02):125.[doi:10. 3969/j. issn. 1674?2869. 2019. 02.]
 WANG Guoxiang,JIN Can,WANG Ying,et al.Adsorption of Sulfate Ion by ZnCl2-Modified Activated Carbon[J].Journal of Wuhan Institute of Technology,2019,(02):125.[doi:10. 3969/j. issn. 1674?2869. 2019. 02.]

备注/Memo

备注/Memo:
收稿日期:2024-08-16
基金项目:国家自然科学基金(51602230)
作者简介:徐可昕,硕士研究生。Email:13596119794@163.com
*通信作者:黄华波,博士,副教授。Email:hbhuang@wit.edu.cn
引文格式:徐可昕,祝洋,徐雪,等. 聚酰亚胺/活性炭复合材料的制备及其电化学性能[J]. 武汉工程大学学报,2025,47(2):167-173.
更新日期/Last Update: 2025-05-08