[1] OYEDOTUN K O,IGHALO J O,AMAKU J F,et al. Advances in supercapacitor development:materials,processes,and applications [J]. Journal of Electronic Materials,2023,52(1):96-129.
[2] SHAH S S, NIAZ F, EHSAN M A,et al. Advanced strategies in electrode engineering and nanomaterial modifications for supercapacitor performance enhancement:a comprehensive review [J]. Journal of Energy Storage,2024,79:110152.
[3] RADHAKRISHNAN S,PATRA A,MANASA G,et al. Borocarbonitride-based emerging materials for supercapacitor applications:recent advances,challenges,and future perspectives [J]. Advanced Science,2024,11(4):2305325.
[4] 武比,秦丽溶,赵建伟,等. CoO@NiMo-O(P)分级复合材料的制备及其超级电容性能[J]. 复合材料学报,2022,39(12):5727-5735.
[5] HUANG J H,DONG X L,GUO Z W,et al. Progress of organic electrodes in aqueous electrolyte for energy storage and conversion [J]. Angewandte Chemie(International Edition),2020,59(42):18322-18333.
[6] HUANG G X, ZHANG Y, WANG L, et al. Fiber-based MnO2/carbon nanotube/polyimide asymmetric supercapacitor [J]. Carbon,2017,125:595-604.
[7] GAO X, CHEN Y, GU C J, et al. Non-conjugated diketone as a linkage for enhancing the rate performance of poly(perylenediimides) [J]. Journal of Materials Chemistry A,2020,8(37):19283-19289.
[8] HALDAR S, RASE D, SHEKHAR P, et al. Incorporating conducting polypyrrole into a polyimide COF for carbon-free ultra-high energy supercapacitor [J]. Advanced Energy Materials,2022,12(34):2200754.
[9] HUANG H B,WU K J, MA R P,et al. Incorporating polyimide cathode materials into porous polyaniline xerogel to optimize the zinc-storage behavior[J]. Advanced Powder Technology,2022,33(12):103878.
[10] JIANG B, HUANG T, YANG P, et al. Solution-processed perylene diimide-ethylene diamine cathodes for aqueous zinc ion batteries [J]. Journal of Colloid and Interface Science,2021,598:36-44.
[11] 肖娴,徐小尘,李琇廷,等. 含聚醚链段聚酰亚胺膜的制备及气体分离性能[J]. 高分子学报,2022,53(5):505-513.
[12] WANG J, LIU H C, DU C Y, et al. Towards high performance polyimide cathode materials for lithium-organic batteries by regulating active-site density,accessibility,and reactivity [J]. eScience,2024,4(4):100224.
[13] YANG Q Y, HUANG J, TU J Y, et al. A micropore-dominant N,P,S-codoped porous carbon originating from hydrogel for high-performance supercapacitors mediated by phytic acid [J]. Microporous and Mesoporous Materials,2021,316:110951.
[14] FU Y Q, WEI Q L, ZHANG G X, et al. High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon [J]. Advanced Energy Materials,2018,8(26):1801445.
[15] HUANG H B,WANG Y C,HU J J, et al. Polyaniline-poly (styrene sulfonate) hydrogel derived hierarchically porous N,S-codoped carbon for high-performance supercapacitors [J]. Journal of Materials Science:Materials in Electronics,2021,32(7):8916-8931.
[16] ZHAI Z Z, REN B, XU Y L, et al. Nitrogen self-doped carbon aerogels from chitin for supercapacitors [J]. Journal of Power Sources,2021,481:228976.
[17] SANTA-CRUZ L A, TAVARES F C, LOGUERCIO L F,et al. Electrochemical impedance spectroscopy:from breakthroughs to functional utility in supercapacitors and batteries:a comprehensive assessment [J]. Physical Chemistry Chemical Physics,2024,26(40):25748-25761.
[18] GUO Z C,WANG J P,MU J B,et al. Ag nanodots-induced interfacial fast electronic/ionic diffusion kinetics of carbon capsule supported CoMn2O4 for high-voltage supercapacitors [J]. Fuel,2024,357(Part B):129818.
[19] 罗剑,田宝妍,吕彦,等. 锰氧化物/N-掺杂碳复合材料的制备及电化学性能研究[J]. 武汉工程大学学报,2024,46(4):382-389.
[20] LIU Y N,LU Y Y,KHAN A H,et al. Redox-bipolar polyimide two-dimensional covalent organic framework cathodes for durable aluminium batteries [J]. Angewandte Chemie(International Edition),2023,62(30):e202306091.
[21] LIU G Q, WANG G R, JIN Z L. Superficially activating strategies to elevate the supercapacitor performance of nano-cube nickel cobalt-Prussian blue[J]. Electrochimica Acta,2024,502:144832.
[22] 何清,牟雨航,孟辰尧,等. CNT@Ni-MOFs的制备及其在超级电容器中的应用[J].武汉工程大学学报,2024,46(3):258-266.