[1] 刘学人,刘康,王安妮,等. 视觉SLAM技术在室内三维重建中的应用[J]. 测绘技术装备,2023,25(4): 77-80.
[2] 董玲洁,代广红,冀松. 基于3D激光投影的室内场景三维重建模型[J]. 应用激光,2022,42(7):125-132.
[3] 王玮琦, 游雄, 杨剑,等. 一种改进匹配点对选取策略的ElasticFusion室内三维重建算法[J]. 武汉大学学报(信息科学版), 2020, 45(9): 1469-1477.
[4] 危双丰, 刘振彬, 赵江洪,等. SLAM室内三维重建技术综述[J]. 测绘科学, 2018, 43(7): 15-26.
[5] 王旒军, 陈家斌, 余欢,等. RGB-D SLAM综述[J]. 导航定位与授时, 2017, 4(6):9-18.
[6] 梅峰, 刘京, 李淳芃,等. 基于RGB-D深度相机的室内场景重建[J]. 中国图象图形学报, 2015, 20(10): 1366-1373.
[7] SCH?NBERGER J L, FRAHM J M. Structure-from-motion revisited[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 4104-4113.
[8] MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2021, 65(1): 99-106.
[9] YARIV L, GU J T, KASTEN Y, et al. Volume rendering of neural implicit surfaces[C]//Advances in Neural Information Processing Systems. [S.l.]: Neural Information Processing Systems Foundation,2021:4805-4815.
[10] WANG P, LIU L J, LIU Y, et al. NeuS: learning neural implicit surfaces by volume rendering for multi-view reconstruction[Z/OL].(2023-02-01)[2023-12-29]. https://doi.org/10.48550/arXiv. 2106. 10689.
[11] FU Q C, XU Q S, ONG Y S, et al. Geo-Neus: geometry-consistent neural implicit surfaces learning for multi-view reconstruction[C]//Advance in Neural Information Processing Systems. [S.l.]: Neural Information Processing Systems Foundation,2022: 3403-3416.
[12] LIU S H, YU Y F, PAUTRAT R, et al. 3D line mapping revisited[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2023: 21445-21455.
[13] 陈起凤,刘军,李威,等. 三维重建中线段匹配方法的研究[J]. 武汉工程大学学报,2018,40(4):446-450.
[14] PARK J J, FLORENCE P, STRAUB J, et al. DeepSDF: learning continuous signed distance functions for shape representation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2019: 165-174.
[15] 郑游, 王磊, 杨紫文. 基于多尺度深度图自适应融合的单目深度估计[J]. 武汉工程大学学报, 2024, 46(1): 85-90.
[16] EFTEKHAR A, SAX A, MALIK J, et al. Omnidata: a scalable pipeline for making multi-task mid-level vision datasets from 3D scans[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2021: 10766-10776.
[17] DAI A, CHANG A X, SAVVA M, et al. ScanNet: richly-annotated 3D reconstructions of indoor scenes[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017: 2432-2443.