[1] ALFANO R R. The supercontinuum laser source: fundamentals with updated references [M]. New York: Springer, 2006.
[2] LIU H H, YU Y, SONG W, et al. Recent development of flat supercontinuum generation in specialty optical fibers [J]. Opto-Electronic Advances, 2019, 2(2): 180020.
[3] 杨未强, 宋锐, 韩凯, 等. 超连续谱激光光源研究进展 [J]. 国防科技大学学报, 2020, 42(1): 1-9.
[4] HONG L H, LIU L Q, LIU Y Y, et al. Intense ultraviolet-visible-infrared full-spectrum laser [J]. Light: Science & Applications, 2023, 12(1): 199.
[5] POUDEL C, KAMINSKI C F. Supercontinuum radiation in fluorescence microscopy and biomedical imaging applications [J]. Journal of the Optical Society of America B, 2019, 36(2): A139-A153.
[6] 陈志杰, 潘天宇, 徐源来, 等. 激光化学气相沉积法制备多层氧化铈缓冲层薄膜 [J]. 武汉工程大学学报, 2022, 44(1): 42-47.
[7] 李博, 陈胜平, 李敬岁, 等. 线偏振超连续谱研究进展 [J]. 光学学报, 2023, 43(17): 1719003.
[8] LIM H, JIANG Y, WANG Y M, et al. Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm [J]. Optics Letters, 2005, 30(10): 1171-1173.
[9] RUEHL A, MARTIN M J, COSSEL K C, et al. Ultrabroadband coherent supercontinuum frequency comb [J]. Physical Review A, 2011, 84(1): 011806.
[10] LUDLOW A D, BOYD M M, YE J, et al. Optical atomic clocks [J]. Reviews of Modern Physics, 2015, 87(2): 637-701.
[11] DAI S Y, ZHENG F S, LIU K, et al. Cold atom clocks and their applications in precision measurements [J]. Chinese Physics B, 2021, 30(1): 013701.
[12] 黎玥, 董克攻, 李峰云, 等. 长锥区光子晶体光纤实现300 W高功率可见光超连续谱输出 [J]. 强激光与粒子束, 2021, 33(2): 021002.
[13] FANG Y X, BAO C J, LI S A, et al. Recent progress of supercontinuum generation in nanophotonic waveguides [J]. Laser & Photonics Reviews, 2023, 17(1): 2200205.
[14] DE LA CADENA A, PARK J, TEHRANI K F, et al. Simultaneous label-free autofluorescence multi-harmonic microscopy driven by the supercontinuum generated from a bulk nonlinear crystal [J]. Biomedical Optics Express, 2024, 15(2): 491-505.
[15] RANKA J K, WINDELER R S, STENTZ A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm [J]. Optics Letters, 2000, 25(1): 25-27.
[16] FANG X H, HU M L, HUANG L L, et al. Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber [J]. Optics Letters, 2012, 37(12): 2292-2294.
[17] 余海湖, 吴建文, 马悦, 等. 高非线性光子晶体光纤中可见光至近红外超连续谱的产生 [J]. 光子学报, 2022, 51(9): 0906001.
[18] ZHANG H Y, LI Y, YAN D L, et al. All-fiber high power supercontinuum generation by cascaded photo-nic crystal fibers ranging from 370 nm to 2 400 nm [J]. IEEE Photonics Journal, 2020, 12(2):7101608.
[19] PRINCE M T M, ALAM M S. Comprehensive analysis of dual core photonic crystal fibers for optimizing optical properties towards highly coherent supercontinuum generation [J]. Journal of Lightwave Technology, 2023, 41(17): 5703-5713.
[20] ZHANG H Y, LI F Y, LIAO R Y, et al. Supercontinuum generation of 314.7 W ranging from 390 to 2 400 nm by tapered photonic crystal fiber [J]. Optics Letters, 2021, 46(6): 1429-1432.
[21] S?RENSEN S T, LARSEN C, JAKOBSEN C, et al. Single-mode pumped high air-fill fraction photonic crystal fiber taper for high-power deep-blue supercontinuum sources [J]. Optics Letters, 2014, 39(4): 1097-1100.
[22] HUNTEMANN N, SANNER C, LIPPHARDT B, et al. Single-ion atomic clock with 3×10?18 systematic uncertainty [J]. Physical Review Letters, 2016, 116(6): 063001.
[23] 黄垚, 管桦, 高克林. 不确定度和稳定度达10-18量级的钙离子光频标 [J]. 计测技术, 2023, 43(3): 116-128.
[24] HEIDT A M, FEEHAN J S, PRICE J H V, et al. Limits of coherent supercontinuum generation in normal dispersion fibers [J]. Journal of the Optical Society of America B, 2017, 34(4): 764-775.
[25] GONZALO I B, ENGELSHOLM R D, S?RENSEN M P, et al. Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation [J]. Scientific Reports, 2018, 8: 6579.
[26] DUDLEY J M, COEN S. Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers [J]. Optics Letters, 2002, 27(13): 1180-1182.
[27] BLOW K J, WOOD D. Theoretical description of transient stimulated Raman scattering in optical fibers [J]. IEEE Journal of Quantum Electronics, 1989, 25(12): 2665-2673.
[28] DUDLEY J M,GENTY G,COEN S. Supercontinuum generation in photonic crystal fiber [J]. Reviews of Modern Physics, 2006, 78(4): 1135-1184.
[29] 刘双龙. 宽带相干反斯托克斯拉曼散射光谱探测和显微成像研究 [D]. 深圳: 深圳大学, 2019.
[30] HEIDT A M, HARTUNG A, BOSMAN G W, et al. Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers [J]. Optics Express, 2011, 19(4): 3775-3787.
[31] RAVI A, BECK M, PHILLIPS D F, et al. Visible-spanning flat supercontinuum for astronomical applications [J]. Journal of Lightwave Technology, 2018, 36(22): 5309-5315.
[32] GENIER E, GRELET S, ENGELSHOLM R D, et al. Ultra-flat, low-noise, and linearly polarized fiber supercontinuum source covering 670-1 390 nm [J]. Optics Letters, 2021, 46(8): 1820-1823.