[1] ACUNA V, GINEBREDA A, MOR J R, et al. Balancing the health benefits and environmental risks of pharmaceuticals: diclofenac as an example [J]. Environment International, 2015, 85: 327-333.
[2] NIKOLAOU A, MERIC S, FATTA D. Occurrence patterns of pharmaceuticals in water and wastewater environments [J]. Analytical and Bioanalytical Chemistry, 2007, 387(4): 1225-1234.
[3] COELHO A D, SANS C, AGUERA A, et al. Effects of ozone pre-treatment on diclofenac: intermediates, biodegradability and toxicity assessment [J]. Science of The Total Environment, 2009, 407(11): 3572-3578.
[4] 邵子纯, 卢建, 马铭潞,等. 磁性共价三嗪骨架材料对酸性橙7的吸附研究 [J]. 水处理技术, 2020, 46(9): 63-68.
[5] 杨承伟, 何倩, 叶大伟,等. 过氧化氢诱导介孔CeO2的合成及对酸性橙7有机染料的吸附研究 [J]. 乐山师范学院学报, 2020, 35(12): 27-32.
[6] TIAN S H, XU S, LIU J T, et al. Highly efficient removal of both cationic and anionic dyes from wastewater with a water-stable and eco-friendly Fe-MOF via host-guest encapsulation [J]. Journal of Cleaner Production, 2019, 239: 117767.
[7] 唐朝春, 黄从新. 共价有机框架材料吸附去除重金属离子研究进展 [J]. 水处理技术,2022,48(3):1-6,12.
[8] ZHAN X Q, TSAI F C, XIE L, et al. Ligands-coordinated Zr-based MOF for wastewater treatment [J]. Nanomaterials, 2018, 8(9): 655.
[9] 任龙芳, 高晓东, 张馨月,等. UiO-66-NH2/MoS2@PUF的制备及其对Cr(Ⅵ)的吸附 [J]. 精细化工, 2023, 40(2): 398-406,447.
[10] 彭雨, 吴依, 杨紫微,等. UiO-66-NH2及ZIF-8复合材料的制备及催化性能研究进展 [J]. 广州化工, 2020, 48(13): 4-6.
[11] 赵瑞明, 叶代杰, 高梓翔,等. UiO系列金属-有机骨架材料在重金属离子去除中的应用 [J]. 广东石油化工学院学报, 2022, 32(3): 60-64.
[12] 卜子宁, 孙洋, 于倩倩,等. 金属改性生物炭吸附水体中磷酸盐研究现状 [J]. 应用化工,2024,53(10): 2413-2417.
[13] 胡斌, 洪玉文, 付冬雪,等. 基于MOFs的Pb(Ⅱ)离子印迹聚合物的制备及性能研究 [J]. 云南大学学报(自然科学版), 2024, 46(6): 1111-1119.
[14] LV S W, LIU J M, MA H, et al. Simultaneous adsorption of methyl orange and methylene blue from aqueous solution using amino functionalized Zr-based MOFs [J]. Microporous and Mesoporous Materials, 2019, 282: 179-187.
[15] AZHAR M H, NOOR T, IQBAL N, et al. CO2 adsorption properties of Ni-BDC MOF and its 1-8 wt% g-C3N4/Ni-BDC MOF [J]. Materials Science and Engineering: B, 2024, 299: 117043.
[16] CAO J, YANG Z H, XIONG W P, et al. One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: simultaneous adsorption and photocatalysis [J]. Chemical Engineering Journal, 2018, 353: 126-137.
[17] TSENG W C, HUSSAIN S, TSAY R Y, et al. On the adsorption kinetics of an eco-friendly surfactant n-decyl-β-D-maltopyranoside [J]. Journal of Surfactants and Detergents, 2023, 26(5): 645-653.
[18] ZHOU Z, LIU Y G, LIU S B, et al. Sorption performance and mechanisms of arsenic(V) removal by magnetic gelatin-modified biochar [J]. Chemical Engineering Journal, 2017, 314: 223-231.
[19] ZHANG X T, LIU M Y, HAN R P. Adsorption of phosphate on UiO-66-NH2 prepared by a green synthesis method [J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106672.
[20] ZHANG Z H, TAO C A, ZHAO J, et al. Microwave-assisted solvothermal synthesis of UiO-66-NH2 and its catalytic performance toward the hydrolysis of a nerve agent simulant [J]. Catalysts,2020,10(9): 1086.
[21] SALAMA R S, MANNAA M A, ALTASS H M, et al. Expression of concern: palladium supported on mixed-metal-organic framework (Co-Mn-MOF-74) for efficient catalytic oxidation of CO[J]. RSC Advances, 2024, 14(21): 14702.
[22] ZHOU K, LI D H, ZHOU C K, et al. Metal heteroatom (Mg, Cu and Co) and porous carbon co-doped MIL-101 composites with superior acetone capture capacity [J]. Chemical Engineering Journal, 2022, 430: 132656.
[23] HA N T T, LEFEDOVA O V, HA N N. Theoretical study on the adsorption of carbon dioxide on individual and alkali-metal doped MOF-5s [J]. Russian Journal of Physical Chemistry A, 2015, 90(1): 220-225.
[24] OBESO J L, VILTRES H, FLORES C V, et al. Al(III)-based MOFs adsorbent for pollution remediation: insights into selective adsorption of sodium diclofenac [J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109872.
[25] ZHUANG S T, CHENG R, WANG J L. Adsorption of diclofenac from aqueous solution using UiO-66-type metal-organic frameworks [J]. Chemical Engineering Journal, 2019, 359: 354-362.
[26] REGO R M, SRIRAM G, AJEYA K V, et al. Cerium based UiO-66 MOF as a multipollutant adsorbent for universal water purification [J]. Journal of Hazardous Materials, 2021, 416: 125941.
[27] ABDI J, VOSSOUGHI M, MAHMOODI N M, et al. Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal [J]. Chemical Engineering Journal, 2017, 326: 1145-1158.
[28] WANG P, TANG L, WEI X, et al. Synthesis and application of iron and zinc doped biochar for removal of p-nitrophenol in wastewater and assessment of the influence of co-existed Pb(II) [J]. Applied Surface Science, 2017, 392: 391-401.
[29] WU Z B, ZHONG H, YUAN X Z, et al. Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater [J]. Water Research, 2014, 67: 330-344.
[30] YAN Y Z, AN Q D, XIAO Z Y, et al. Flexible core-shell/bead-like alginate@PEI with exceptional adsorption capacity, recycling performance toward batch and column sorption of Cr(VI) [J]. Chemical Engineer-ing Journal, 2017, 313: 475-486.
[31] RRMEZANZADEH M, ASGHARI M, RAMEZ-ANZADEH B, et al. Fabrication of an efficient system for Zn ions removal from industrial wastewater based on graphene oxide nanosheets decorated with highly crystalline polyaniline nanofibers (GO-PANI): experimental and ab initio quantum mechanics approaches [J]. Chemical Engineering Journal, 2018, 337: 385-397.
[32] ALMASRI D A, RHADFI T, ATIEH M A, et al. High performance hydroxyiron modified montmorill-onite nanoclay adsorbent for arsenite removal[J]. Chemical Engineering Journal, 2018, 335: 1-12.
[33] LEI C S, ZHU X F, ZHU B C, et al. Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions [J]. Journal of Hazardous Materials, 2017, 321: 801-811.