|本期目录/Table of Contents|

[1]郑小涛,张 亮,戴耀南*. 高温液态铅铋腐蚀环境下堆芯构件的机械性能研究进展 [J].武汉工程大学学报,2025,47(03):315-324.[doi:10.19843/j.cnki.CN42-1779/TQ.202405007]
 ZHENG Xiaotao,ZHANG Liang,DAI Yaonan*. Research progress on mechanical properties of core components in high-temperature liquid lead-bismuth corrosion environments [J].Journal of Wuhan Institute of Technology,2025,47(03):315-324.[doi:10.19843/j.cnki.CN42-1779/TQ.202405007]
点击复制

高温液态铅铋腐蚀环境下堆芯构件的机械性能研究进展
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年03期
页码:
315-324
栏目:
智能制造
出版日期:
2025-06-30

文章信息/Info

Title:
Research progress on mechanical properties of core components in high-temperature liquid lead-bismuth corrosion environments
文章编号:
1674 - 2869(2025)03 - 0315 - 10
作者:
1. 武汉工程大学机电工程学院,湖北 武汉 430205;
2. 湖北省绿色化工装备工程技术研究中心(武汉工程大学),湖北 武汉 430205
Author(s):
1. School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
2. Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment(Wuhan Institute of Technology), Wuhan 430205, China
关键词:
Keywords:
分类号:
TL34
DOI:
10.19843/j.cnki.CN42-1779/TQ.202405007
文献标志码:
A
摘要:
作为最有发展前景的第四代核能技术,铅冷快堆(LFR)虽已累积近百堆年的运行经验,但仍面临长周期运行条件下堆芯构件高温液态金属腐蚀与结构完整性评价等诸多挑战,成为制约民用LFR技术发展的主要瓶颈之一。为保证控氧液态铅铋共晶(LBE)环境下LFR堆芯构件完整性,针对LFR候选材料在高温LBE环境下的抗腐蚀效应成为研究重点。本文聚焦奥氏体及马氏体不锈钢等堆芯主体材料,综合分析并概述了这些材料在高温LBE环境下的腐蚀机理,以及拉伸-蠕变-疲劳等机械性能的变化规律,总结提出了部分材料的腐蚀速率预测模型,以补充LFR堆芯构件在高温LBE环境下的腐蚀效应的评价方法和标准。面向液态LBE加速奥氏体不锈钢蠕变和疲劳开裂的微观机理及其交互作用机制的研究,将进一步丰富和完善LFR技术的评价体系。
Abstract:
As the most promising fourth-generation nuclear energy technology, lead-cooled fast reactors (LFR), having being in operation for nearly a century, still face significant challenges including high-temperature liquid metal corrosion of core components and structural integrity evaluation under long-term operating conditions, which constitute one of the major bottlenecks hindering the development of civilian LFR technology. To ensure the integrity of LFR core components in an oxygen-controlled liquid lead-bismuth eutectic (LBE) environment, the corrosion resistance of candidate materials for LFR in high-temperature LBE environments has become a research focus. This paper focuses on the core materials such as austenitic and martensitic stainless steels, comprehensively analyzes and summarizes their corrosion mechanisms in high-temperature LBE environments, as well as the variation patterns of mechanical properties such as tensile, creep, and fatigue, and proposes a corrosion rate prediction model for some materials to complement the evaluation methods and standards for the corrosion effects of LFR core components in high-temperature LBE environments. Studies on the micro-mechanisms and interaction mechanisms of creep-fatigue cracking in austenitic stainless steels accelerated by LBE will further enrich and refine the evaluation system for LFR technology.

参考文献/References:

[1] 夏榜样, 徐灿, 秦天骄, 等. 长循环铅冷快堆堆芯装载方法研究[J]. 核动力工程,2023,44(6):260-265.
[2] 林强, 冯金辉, 陈刚, 等. 铁素体/马氏体钢在液态铅铋中的断裂力学试验研究进展[J]. 固体力学学报, 2023, 44(3): 317-345.
[3] 梁娜, 姚存峰, 龙斌, 等. 铅冷快堆结构材料耐蚀涂层技术研究概述[J].材料导报, 2022, 36(23): 21090168.
[4] MUSTARI A P A, TAKAHASHI M. Study on corrosion of welded steel for LBE-cooled fast reactors[J]. Progress in Nuclear Energy, 2011, 53(7): 1073-1077.
[5] ZHU Z G, ZHANG Q, TAN J B, et al. Corrosion behavior of T91 steel in liquid lead-bismuth eutectic at 550 ℃: effects of exposure time and dissolved oxygen concentration [J]. Corrosion Science, 2022,204:110405.
[6] LEE J K, BAE S, DHAR S A. Versatile testing facility for heavy liquid metal-cooled fast reactor at the university of Pittsburgh[J]. Nuclear Technology, 2024, 210(4): 772-780.
[7] 王军健, 李华鑫, 李红菊, 等. 静态腐蚀条件下铁素体/马氏体钢和奥氏体不锈钢与液态铅铋合金相容性研究进展[J]. 强激光与粒子束, 2023, 35(5) : 056001.
[8] VOGT J B, SERRE I P. A review of the surface modifications for corrosion mitigation of steels in lead and LBE [J]. Coatings, 2021, 11(1): 53.
[9] 吴欣强, 戎利建, 谭季波, 等. 耐Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[10] YURECHKO M, SKRYPNIK A,WEDEMEYER O, et al. Creep of 316L austenitic steel at 450-550 ℃ in static lead-bismuth eutectic covered by argon-hydrogen gas[J]. Journal of Nuclear Materials, 2022, 558: 153344.
[11] ODAIRA N, SAITO S. Characterization of mechanical strain induced by lead-bismuth eutectic (LBE) freezing in stainless steel cup[J]. Heliyon, 2020, 6(2): e03429.
[12] KLOK O, LAMBRINOU K, GAVRILOV S, et al. Effect of deformation twinning on dissolution corrosion of 316L stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 ℃[J]. Journal of Nuclear Materials, 2018, 510: 556-567.
[13] 李清, 袁小会, 刘岑, 等. 有效试验数据对钢材机械性能分布规律的影响[J]. 武汉工程大学学报, 2015, 37(4): 69-73.
[14] ILIN?EV G. Research results on the corrosion effects of liquid heavy metals Pb, Bi and Pb-Bi on structural materials with and without corrosion inhibitors[J]. Nuclear Engineering and Design, 2002, 217(1/2):167-177.
[15] LI C, FANG X D, WANG Q S, et al. A synergy of different corrosion failure modes pertaining to T91 steel impacted by extreme lead-bismuth eutectic flow pattern [J]. Corrosion Science, 2021, 180: 109214.
[16] CHARALAMPOPOULOU E, LAMBRINOU K, DONCK T V D, et al. Early stages of dissolution corrosion in 316L and DIN 1.497 0 austenitic stainless steels with and without anticorrosion coatings in static liquid lead-bismuth eutectic (LBE) at 500 ℃[J]. Materials Characterization, 2021, 178: 111234.
[17] LI X H, ZENG X, ZHAO Z C, et al. Fast‐flowing LBE corrosion of the SiC pump impeller: numerical and experimental investigations[J]. International Journal of Applied Ceramic Technology, 2023, 20(1): 436-450.
[18] REN H, ZHANG X X, CHEN Y X, et al. Synergistic effects of Si and Y on corrosion behavior of cast cladding steels by pre-laying Y powder for nuclear applications in static liquid LBE[J]. Journal of Nuclear Materials, 2022, 566: 153781.
[19] SCHROER C, WEDEMEYER O, NOVOTNY J, et al. Selective leaching of nickel and chromium from Type 316 austenitic steel in oxygen-containing lead-bismuth eutectic (LBE)[J]. Corrosion Science, 2014, 84: 113-124.
[20] LAMBRINOU K, CHARALAMPOPOULOU E, DONCK T V D, et al. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 ℃ [J]. Journal of Nuclear Materials, 2017, 490: 9-27.
[21] KLOK O, LAMBRINOU K, GAVRILOV S, et al. Effect of LEB oxygen concentration on the onset of dissolution corrosion in 316 L austenitic stainless steel at 450 ℃[J]. Journal of Nuclear Engineering and Radiation Science, 2018, 4(3): 031019.
[22] ROY M, MARTINELLI L, GINESTAR K, et al. Dissolution and oxidation behaviour of various austenitic steels and Ni rich alloys in lead-bismuth eutectic at 520 ℃[J]. Journal of Nuclear Materials, 2016, 468: 153-163.
[23] REN H, ZENG X, ZHANG X X, et al. Dissolution corrosion of FeCrAl alloy exposed to oxygen-depleted lead-bismuth eutectic containing Ni impurities at 600 ℃[J]. Nuclear Materials and Energy, 2024, 38: 101590.
[24] HEINITZ S, SCHUMANN D, NEUHAUSEN J, et al. A comparison between the chemical behaviour of lead-gold and lead-bismuth eutectics towards 316L stainless steel[J]. Radiochimca Acta, 2013, 101(10): 637-643.
[25] CHEN Q S, ZHAI L H, CHEN Y X, et al. Corrosion behaviour of 11Cr1Si ferritic/martensitic steel in static liquid lead-bismuth eutectic at 450-550 ℃[J]. Nuclear Materials and Energy, 2023, 35: 101429.
[26] ZHOU J Y, SUN Y, HU T H, et al. Uncovering the mechanism of the LME susceptibility for the galvanized and electrogalvanized DP 1180 steels[J]. Materials Today Communications, 2024,38:108530.
[27] WANG S, CHEN C B, JU J, et al. Suppression of LME cracks in Sn bronze-steel system based on multi-material additive manufacturing[J]. Materials Letters, 2023, 335: 133775.
[28] ZHANG J S, LI N. Review of the studies on fundamental issues in LBE corrosion[J]. Journal of Nuclear Materials, 2008, 373(1/2/3): 351-377.
[29] CHEN X, STUBBINS J F, HOSEMANN P, et al. Analysis of corrosion scale structure of pre-oxidized stainless steel 316 in molten lead bismuth eutectic and the relation to impedance spectroscopy response[J]. Journal of Nuclear Materials, 2010, 398(1/2/3): 172-179.
[30] FENG S W, SUN X Y, CHEN G, et al. LBE corrosion fatigue life prediction of T91 steel and 316 SS using machine learning method assisted by symbol regression[J]. International Journal of Fatigue, 2023, 177: 107962.
[31] SHI K, YANG J, CHEN Q S, et al. Corrosion behavior of ion-irradiated 12Cr2W2Mn F/M steel in liquid LBE[J]. Nuclear Materials and Energy, 2021, 28: 101033.
[32] SCHROER C, KOCH V, WEDEMEYER O, et al. Silicon-containing ferritic/martensitic steel after exposure to oxygen-containing flowing lead- bismuth eutectic at 450 and 550 ℃[J]. Journal of Nuclear Materials, 2016, 469: 162-176.
[33] TSISAR V, SCHROER C, WEDEMEYER O, et al. Long-term corrosion of austenitic steels in flowing LBE at 400 ℃ and 10-7 mass% dissolved oxygen in comparison with 450 and 550 ℃[J]. Journal of Nuclear Materials, 2016, 468: 305-312.
[34] LI N. Active control of oxygen in molten lead-bismuth eutectic systems to prevent steel corrosion and coolant contamination[J]. Journal of Nuclear Materials, 2002, 300(1):73-81.
[35] MüLLER G, HEINZEL A, SCHUMACHER G, et al. Control of oxygen concentration in liquid lead and lead-bismuth [J]. Journal of Nuclear Materials, 2003, 321 (2/3): 256-262.
[36] LIM J, MARI?N A, ROSSEEL K, et al. Accuracy of potentiometric oxygen sensors with Bi/Bi2O3 reference electrode for use in liquid LBE[J]. Journal of Nuclear Materials, 2012, 429(1/2/3):270-275.
[37] LIM J, MANFREDI G, GAVRILOV S, et al. Control of dissolved oxygen in liquid LBE by electrochemical oxygen pumping[J].Sensors and Actuators B: Chemical, 2014, 204:388-392.
[38] LUO W W, HUANG Q Y, LUO L, et al. Effect of minor addition of Ce on microstructure and LBE corrosion resistance for CLAM steel[J]. Corrosion Science, 2022, 209: 110796.
[39] WAN Q, WU Z Y, LIU Y, et al. Lead-bismuth eutectic (LBE) corrosion mechanism of nano-amorphous composite TiSiN coatings synthesized by cathodic arc ion plating[J]. Corrosion Science, 2021, 183: 109264.
[40] ZHAO L, YAO C F, ZHANG H P, et al. Experimental investigation on corrosion of structural steels in molten Pb-Mg and LBE[J]. Nuclear Materials and Energy, 2022, 33: 101310.
[41] PETERSSON C,SZAKALOS P,PETTERSSON R, et al. Negative effect of bismuth in lead on liquid metal embrittlement of a ferritic steel[J]. Journal of Nuclear Materials, 2024, 588: 154829.
[42] YE C Q, VOGT J B, SERRE I P. Liquid metal embrittlement of the T91 steel in lead bismuth eutectic: the role of loading rate and of the oxygen content in the liquid metal[J]. Materials Science and Engineering: A, 2014, 608: 242-248.
[43] ZHAO J W, WANG Y B, ZENG P C, et al. High-temperature corrosion behavior of 316 H stainless steel in lead-bismuth eutectic containing cesium [J]. Corrosion Science, 2024, 236: 112282.
[44] YAO M J, PRADEEP K G, TASAN C C, et al. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility[J]. Scripta Materialia, 2014, 72/73: 5-8.
[45] STERGAR E, EREMIN S G, GAVRILOV S, et al. Influence of LBE long term exposure and simultaneous fast neutron irradiation on the mechanical properties of T91 and 316L[J]. Journal of Nuclear Materials, 2016, 473: 28-34.
[46] DAS C, GAWDE P S, KRISHNAMURTHY N. Effect of flowing lead-bismuth eutectic on the mechanical and structural properties of stainless steel 304L[J]. Transactions of the Indian Institute of Metals, 2014, 67(2): 193-196.
[47] GONG X, SHORT M P, AUGER T, et al. Environmental degradation of structural materials in liquid lead-and lead-bismuth eutectic-cooled reactors[J]. Progress in Materials Science, 2022, 126: 100920.
[48] LIU J, SHI Q Q, LUAN H, et al. Oxidation and tensile behavior of ferritic/martensitic steels after exposure to lead-bismuth eutectic[J]. Materials Science and Engineering: A, 2016, 670: 97-105.
[49] JIANU A, MüLLER G, WEISENBURGER A, et al. Creep-to-rupture tests of T91 steel in flowing Pb-Bi eutectic melt at 550 ℃[J]. Journal of Nuclear Materials, 2009, 394(1): 102-108.
[50] VOGT J B, BOUQUEREL J, CARLE C, et al. Stability of fatigue cracks at 350 ℃ in air and in liquid metal in T91 martensitic steel[J]. International Journal of Fatigue, 2020, 130:105265.
[51] VOGT J B, SERRE I P. Fatigue behaviour of a martensitic and an austenitic steel in heavy liquid metals[J]. Procedia Engineering, 2013,55: 812-818.
[52] GORSE D, AUGER T, VOGT J B, et al. Influence of liquid lead and lead-bismuth eutectic on tensile, fatigue and creep properties of ferritic/martensitic and austenitic steels for transmutation systems[J]. Journal of Nuclear Materials, 2011, 415(3): 284-292.
[53] GONG X, MARMY P, VERLINDEN B, et al. Low cycle fatigue behavior of a modified 9Cr-1Mo ferritic-martensitic steel in lead-bismuth eutectic at 350 ℃:effects of oxygen concentration in the liquid metal and strain rate[J]. Corrosion Science, 2015, 94: 377-391.
[54] TSISAR V, SCHROER C, WEDEMEYER O, et al. Corrosion behavior of austenitic steels 1.497 0, 316L and 1.457 1 in flowing LBE at 450 and 550 ℃ with 10-7 mass% dissolved oxygen[J]. Journal of Nuclear Materials, 2014, 454(1/2/3): 332-342.
[55] SCHROER C, KONYS J. Quantification of the long-term performance of steels T91 and 316L in oxygen-containing flowing lead-bismuth eutectic at 550 ℃[J].Journal of Engineering for Gas Turbines and Power, 2010, 132(8): 082901.
[56] KURATA Y, FUTAKAWA M, SAITO S. Corrosion behavior of steels in liquid lead-bismuth with low oxygen concentrations[J]. Journal of Nuclear Materials, 2008, 373(1/2/3): 164-178.
[57] SAPUNDJIEV D, VAN DYCK S, BOGAERTS W. Liquid metal corrosion of T91 and A316L materials in Pb-Bi eutectic at temperatures 400-600 ℃[J]. Corrosion Science, 2006, 48(3): 577-594.


相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-05-12
基金项目:国家自然科学基金(52275159);湖北省杰出青年自然科学基金(2022CFA059);武汉工程大学第十五届研究生教育创新基金(CX2023220)
作者简介:郑小涛,博士,教授。Email:xiaotaozheng@163.com
*通信作者:戴耀南,博士,讲师。Email:dyn1121758919@163.com
引文格式:郑小涛,张亮,戴耀南. 高温液态铅铋腐蚀环境下堆芯构件的机械性能研究进展[J]. 武汉工程大学学报,2025,47(3):315-324.
更新日期/Last Update: 2025-07-09