|本期目录/Table of Contents|

[1]马学良,赵 翔,汪 威*,等. 新型溢流管分离器流场及分离性能研究 [J].武汉工程大学学报,2025,47(03):331-337.[doi:10.19843/j.cnki.CN42-1779/TQ.202501013]
 MA Xueliang,ZHAO Xiang,WANG Wei*,et al. Study on flow field and separation performance of hydrocyclones with novel overflow tube designs [J].Journal of Wuhan Institute of Technology,2025,47(03):331-337.[doi:10.19843/j.cnki.CN42-1779/TQ.202501013]
点击复制

新型溢流管分离器流场及分离性能研究
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年03期
页码:
331-337
栏目:
智能制造
出版日期:
2025-06-30

文章信息/Info

Title:
Study on flow field and separation performance of hydrocyclones with novel overflow tube designs



文章编号:
1674 - 2869(2025)03 - 0331 - 07
作者:
武汉工程大学机电工程学院, 化工装备强化与本质安全湖北省重点实验室,湖北 武汉 430205
Author(s):
College of Mechanical and Electrical Engineering, Wuhan Institute of Technology,
Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, Wuhan 430205, China
关键词:
Keywords:
分类号:
TH12;TQ051.8
DOI:
10.19843/j.cnki.CN42-1779/TQ.202501013
文献标志码:
A
摘要:
针对现有固-液分离器颗粒捕捉能力弱、结构优化不足、分离效率低的现状,设计了两种新型溢流管结构的水力旋流器。采用计算流体力学(CFD)技术和实验等方法,研究了不同溢流管结构对旋流器流场、空气柱形成、压力分布、能量损失、速度场以及分离精度的影响。结果表明:渐缩型(b型)和渐扩型(c型)溢流管有效抑制了循环流和短路流,减少了能量损失,并显著提高了分离精度。尤其是c型旋流器,其溢流管底部的收缩结构抑制了短路流,显著提高了低密度颗粒的分离效率,避免了“溢流跑粗”现象。与传统旋流器(a型)相比,新型旋流器在提高回收率和分离效率方面表现出更好的性能,在处理细颗粒时更为明显。试验进一步证明了新型溢流管设计在提高固-液分离效率方面的优势。
Abstract:
To address the limitations of current solid-liquid separators, including poor particle capture capability, suboptimal structural design, and low separation efficiency, this study proposed two novel overflow tube configurations for hydrocyclones.?Computational Fluid Dynamics (CFD) simulations and experimental methods were employed to systematically investigate the effects of these designs on flow field characteristics, air column formation, pressure distribution, energy loss, velocity profiles, and separation precision. Results demonstrated that both the converging (Type b) and diverging (Type c) overflow tubes effectively suppress recirculating and short-circuit flows, reduce energy dissipation, and significantly enhance separation accuracy. Notably, the Type c hydrocyclone features a converging structure at the overflow tube base, which mitigates short-circuit flow, markedly improving the separation efficiency of low-density particles, and preventing the "coarse particle overflow" phenomenon. Compared with conventional hydrocyclones (Type a), the novel designs exhibited superior performance in recovery rate and separation efficiency, particularly for fine particle processing. Experimental validation confirmed the advantages of the optimized overflow tube geometries in advancing solid-liquid separation efficiency, offering valuable insights for industrial separation applications.

参考文献/References:

[1] EKECHUKWU O M, ASIM T, HAWEZ H K. Recent developments in hydrocyclone technology for oil-in-water separation from produced water[J]. Energies, 2024, 17:3181.
[2] LIU X D, QIU J, LYU X J. Purification with hydrocyclone on low grade sodium-bentonite from Xinjiang, China[C]// E3S Web of Conferences: EDP Sciences, 2024:02009.
[3] UYSAL M T, ENISOGLU F, KARA Y. Proceedings of the 10th World Congress on Mechanical, Chemical, and Material Engineering, August 22-24, 2024 [C]. Barcelona:International Academy of Science, Engineering, and Technology, 2024.
[4] ZHANG X G, YU F, JIN Y, et al. Study on flow field characteristics of gas-liquid hydrocyclone separation under vibration conditions[J]. PLOS ONE, 2024, 19 (7):e0307110.
[5] LIU P K, FU W X, JIANG L Y, et al. Effect of the position of overflow pipe with mixed spiral structures on the separation performance of hydrocyclones[J]. Separations, 2023, 10 (2):84.
[6] CAVALCANTE D C M, MAGALH?ES H L F, NETO S R F, et al. Hydrodynamic evaluation of a filtering hydrocyclone for solid particle/water separation [J]. Membranes, 2024, 14:171.
[7] LIU P K, GAO Z Z, YANG X H, et al. A study on the classification performance of water-injection hydrocyclone[J]. Physicochemical Problems of Mineral Processing, 2024, 60 (5):194539.
[8] 魏德洲,张彩娥,高淑玲,等.水力旋流器内部流场及分选过程的研究进展[J].金属矿山,2015(2):12-19.
[9] 郑小涛,龚程,徐红波,等.圆柱段长度对水力旋流分离性能的影响[J].武汉工程大学学报,2015, 37 (1):20-24.
[10] WANG Y C, HAN H, LIANG Z T, et al. Analysis of the effect of structural parameters on the internal flow field of composite curved inlet body hydrocyclone[J]. Processes, 2024, 12:2654.
[11] CHEN S X, LI D L, LI J Y, et al. Optimization design of hydrocyclone with overflow slit structure based on experimental investigation and numerical simulation analysis[J]. Scientific Reports, 2024, 14:18410.
[12] VARAVVA A I, VERSHININ V, TRAPEZNIKOV D V. Numerical modeling of the degassing process of a gas-liquid mixture in hydrocyclone[J]. Tyumen State University Herald Physical and Mathematical Modeling Oil Gas Energy, 2019, 5(3):213-229.
[13] OLALEYE O E, OMBELE B V, LI X X, et al. CFD modeling analysis of a vertical gas liquid separator[J]. Journal of Petroleum Science and Engineering, 2022, 216:110733.
[14] LI F, GAO J M, XING L, et al. Proceedings of the International Field Exploration and Development Conference 2020[C]. Singapore:Springer, 2021.
[15] LIU B, LI L C, WANG H J, et al. Numerical simulation and experimental study on internal and external characteristics of novel hydrocyclones[J]. Heat and Mass Transfer, 2020, 56:1875-1887.
[16] LI S, LI R N, NICOLLEAU F C G A, et al. Study on oil-water two-phase flow characteristics of the hydrocyclone under periodic excitation[J]. Chemical Engineering Research and Design, 2020, 159:215-224.
[17] ADEWOYE A, HOSSAIN M, ISLAM S Z, et al. Proceedings of the 4th World Congress on Momentum, Heat and Mass Transfer: Materials Science 2019 Conference[C]. Rome:International Academy of Science, Engineering and Technology, 2019.
[18] LIU P K, XU X X, YANG X H, et al. Effect of column segment diameter ratio on flow field and separation performance of the composite column-cone hydrocyclone[J]. Physicochemical Problems of Mineral Processing, 2025, 61(1):200063.
[19] ZHANG B L, TIAN S B, HAO Y K, et al. The influence of a novel air column regulating device on the separation performance of hydrocyclones[J]. Intelligent Equipment and Special Robots, 2024, 53:244-249.
[20] 田金乙,倪龙,赵加宁.底流管直径对旋流防阻机性能的影响[J].化工学报, 2016, 67(10):4219-4224.


相似文献/References:

[1]魏祥松,黄启生,李宇新.宜昌花果树磷矿重介质选别工业生产实践[J].武汉工程大学学报,2011,(03):48.[doi:10.3969/j.issn.16742869.2011.03.014]
 WEI Xiang song,HUANG Qi sheng,LI Yu xin.Heavymedia separation industrial production practice ofYichang Huaguoshu Phosphorite[J].Journal of Wuhan Institute of Technology,2011,(03):48.[doi:10.3969/j.issn.16742869.2011.03.014]
[2]喻九阳,孟观林,彭 康,等.旋流器固-液分离的数值模拟[J].武汉工程大学学报,2021,43(02):207.[doi:10.19843/j.cnki.CN42-1779/TQ.202011014]
 YU Jiuyang,MENG Guanlin,PENG Kang,et al.Numerical Simulation of Solid-Liquid Separation in Hydrocyclones[J].Journal of Wuhan Institute of Technology,2021,43(03):207.[doi:10.19843/j.cnki.CN42-1779/TQ.202011014]

备注/Memo

备注/Memo:
收稿日期:2025-01-25
基金项目:湖北省技术创新专项基金(2021BEC025)
作者简介:马学良,硕士研究生。Email:439414371@qq.com
*通信作者:汪 威,博士,副教授。Email:wangwwit@163.com
引文格式:马学良,赵翔,汪威,等. 新型溢流管分离器流场及分离性能研究[J]. 武汉工程大学学报,2025,47(3):331-337.
更新日期/Last Update: 2025-07-09