[1] CURZON F L, AHLBORN B. Efficiency of a Carnot engine at maximum power output[J]. American Journal of Physics, 1975, 43(1): 22-24.
[2] ANDRESEN B, SALAMON P, BERRY R S. Thermodynamics in finite time[J]. Physics Today, 1984, 37(9): 62-70.
[3] CHEN L G. Progress in entransy theory and its applications[J]. Chinese Science Bulletin, 2012, 57(34): 4404-4426.
[4] 刘晓威, 陈林根, 丁泽民, 等. 不可逆谐振子卡诺制冷机有限?时间经济最优性能[J]. 工程热物理学报, 2019, 40(5): 974-981.
[5] 吴锋, 陈林根, 孙丰瑞. 量子卡诺制冷机制冷率与熵产率的协调优化性能[J]. 低温工程, 1996 (1): 1-5.
[6] 吴锋, 孙丰瑞, 陈林根. 1/2 自旋不可逆量子卡诺热机输出功率和熵产率的协调优化[J]. 武汉化工学院学报, 1997, 19(2): 88-91.
[7] DONG K, HUO F, ZHANG S J. Thermodynamics at microscales: 3D→2D, 1D and 0D[J]. Green Energy & Environment, 2020, 5(3): 251-258.
[8] OU C J, ABE S. Weak invariants, temporally local equilibria and isoenergetic processes described by the Lindblad equation[J]. Europhysics Letters, 2019, 125(6): 60004.
[9] KOSLOFF R. A quantum mechanical open system as a model of a heat engine[J]. The Journal of Chemical Physics, 1984, 80(4): 1625-1631.
[10] 吴锋, 汪拓, 陈林根, 等. 量子斯特林热机的输出功和热效率[J]. 机械工程学报,2014,50(4):150-154.
[11] 殷勇, 吴锋, 陈林根. 量子斯特林制冷循环性能研究[J]. 工程热物理学报, 2017,38(10):2061-2067.
[12] THOMAS G, DAS D, GHOSH S. Quantum heat engine based on level degeneracy[J]. Physical Review E, 2019, 100(1): 012123.
[13] CHATTERJEE S, KONER A, CHATTERJEE S, et al. Temperature-dependent maximization of work and efficiency in a degeneracy-assisted quantum Stirling heat engine[J]. Physical Review E, 2021, 103(6): 062109.
[14] HAMEDANI-RAJA S,MANISCALCO S, PARAO-ANU G S, et al. Finite-time quantum Stirling heat engine[J]. New Journal of Physics, 2021, 23(3): 033034.
[15] MYERS N M, ABAH O, DEFFNER S. Quantum thermodynamic devices: from theoretical proposals to experimental reality[J]. AVS Quantum Science, 2022, 4(2): 027101.
[16] PURKAIT C,BISWAS A. Performance of Heisenberg-coupled spins as quantum Stirling heat machine near quantum critical point[J]. Physics Letters A, 2022, 442: 128180.
[17] 舒安庆, 吴锋. 量子热声微循环的优化性能[J]. 物理学报, 2016, 65(16): 164303.
[18] HERNáNDEZ A C,MEDINA A,ROCO J M M,et al. Unified optimization criterion for energy converters[J]. Physical Review E, 2001, 63 (3): 037102.
[19] SáNCHEZ-SALAS N, CHIMAL-EGUíA J C, RAMíREZ-MORENO M A. Optimum performance for energy transfer in a chemical reaction system[J]. Physica A, 2016, 446: 224-233.
[20] CHIMAL J C, SáNCHEZ N, RAMíREZ P R. Thermody-namic optimality criteria for biological systems in linear irreversible thermodynamics[J]. Journal of Physics: Conference Series, 2017, 792(1): 012082.
[21] KAUR K, SINGH V, GHAI J, et al. Unified trade-off optimization of a three-level quantum refrigerator[J]. Physica A, 2021, 576: 125892.
[22] 谢心怡, 陈林根, 殷勇, 等. 不可逆量子矩形循环的功率、效率和有效功率分析与优化[J]. 节能基础科学, 2023, 42(9): 34-38.
[23] 王建辉. 有限时间热力学循环性能的研究[D]. 南昌:南昌大学, 2007.
[24] 刘存, 殷勇, 杨晗, 等. 不可逆量子斯特林热泵循环性能分析与优化[J]. 武汉工程大学学报, 2021, 43(2): 232-236.
[25] OU C J, ABE S. Exotic properties and optimal control of quantum heat engine[J]. Europhysics Letters, 2016, 113(4): 40009.
[26] YIN Y, CHEN L G, WU F. Performance of quantum Stirling heat engine with numerous copies of extreme relativistic particles confined in 1D potential well[J]. Physica A, 2018, 503: 58-70.