[1] BRAUSE R, LANGSDORF T, HEPP M. Neural data mining for credit card fraud detection[C]//Proceedings 11th International Conference on Tools with Artificial Intelligence. Piscataway, NJ: IEEE, 1999: 103-106.?
[2] 范巍强,刘暾东. 基于BP神经网络的信用卡违约风险预测[J].电脑知识与技术,2011,7(10):2348-2349.
[3] 郭建山, 钱军浩. 基于随机森林的信用卡违约预测研究[J]. 现代信息科技, 2020, 4(3): 1-4, 9.
[4] 杨磊, 姚汝婧. 基于Transformer的信用卡违约预测模型研究[J]. 计算机仿真, 2021, 38(8): 440-444.
[5] DOUZAS G, BACAO F. Effective data generation for imbalanced learning using conditional generative adversarial networks[J]. Expert Systems with Applications, 2018, 91: 464-471.
[6] YI H K, JIANG Q C, YAN X F, et al. Imbalanced classification based on minority clustering synthetic minority oversampling technique with wind turbine fault detection application[J]. IEEE Transactions on Industrial Informatics, 2021, 17(9): 5867-5875.
[7] 刘志函, 张忠林, 赵磊. 面向不平衡数据分类的DPC-SMOTE过采样算法[J]. 哈尔滨理工大学学报, 2024,29(6):45-60.
[8] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
[9] 张梦, 陈旭勇, 彭元林, 等. 基于改进合成少数类过采样技术的非概率可靠性指标解[J]. 武汉工程大学学报, 2024, 46(2): 231-236.
[10] HAN H, WANG W Y, MAO B H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning[C]//International Conference on Intelligent Computing. Berlin, German: Springer, 2005: 878-887.
[11] NGUYEN H M, COOPER E W, KAMEI K. Borderline over-sampling for imbalanced data classification[J]. International Journal of Knowledge Engineering and Soft Data Paradigms, 2011, 3(1): 4-21.
[12] CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: Association for Computing Machinery,2016:785-794.
[13] 刘佩. 基于XGBoost算法的医保信息系统入侵安全风险监测方法[J]. 中国医疗设备, 2024, 39(5): 61-65.
[14] 朱小平, 张丽英, 刘静, 等. 基于XGBoost的自动驾驶汽车事故风险预测研究[J]. 时代汽车, 2024(6): 187-189.
[15] 胡晓东, 吕铭春, 阿克弘, 等. 基于优化XGBoost算法的电信用户流失预测[J]. 科技与创新, 2024(10): 36-39, 44.