|本期目录/Table of Contents|

[1]王 旭,张 刚,杨 侠,等. 水冷质子交换膜燃料电池热管理研究 [J].武汉工程大学学报,2025,47(04):448-454.[doi:10.19843/j.cnki.CN42-1779/TQ.202405005]
 WANG Xu,ZHANG Gang,YANG Xia,et al. Thermal management of water-cooled proton exchange membrane fuel cells [J].Journal of Wuhan Institute of Technology,2025,47(04):448-454.[doi:10.19843/j.cnki.CN42-1779/TQ.202405005]
点击复制

水冷质子交换膜燃料电池热管理研究
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年04期
页码:
448-454
栏目:
智能制造
出版日期:
2025-08-29

文章信息/Info

Title:
Thermal management of water-cooled proton exchange membrane fuel cells
文章编号:
1674 - 2869(2025)04- 0448 - 07
作者:
1.武汉工程大学机电工程学院,湖北 武汉 430205;
2.武汉第二船舶设计研究所,湖北 武汉 430205
Author(s):
1. School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
2. Wuhan Second Ship Design and Research Institute, Wuhan 430205, China
关键词:
Keywords:
分类号:
TM912
DOI:
10.19843/j.cnki.CN42-1779/TQ.202405005
文献标志码:
A
摘要:
为提高质子交换膜燃料电池内部温度的均匀性,并实现对冷却系统模型的精准控制,设计了一种Y型树状分形冷却流道。利用Fluent软件对带有冷却流道的单电池进行数值模拟,分析了冷却水温度及流量对质子交换膜表面温度分布和单电池极化曲线的影响。同时,利用Simulink搭建PID控制器和自抗扰控制器(ADRC)模型,分别对电堆温度进行控制,并对比分析了二者控制效果的优劣。结果表明:当冷却水质量流量为1 g/s时,333 K的冷却水比298 K的冷却水对燃料电池的冷却效果更佳,质子交换膜表面温差更小,温度分布也更均匀;当冷却水温度为室温298 K、质量流量为1.5 g/s时,达到最大电流密度0.440 3 A/cm2;当冷却水预热至343 K、质量流量为6 g/s时,达到最大电流密度0.476 8 A/cm2;ADRC的控制效果优于PID控制器,当负载电流3次阶跃变化时,ADRC调节电堆温度的超调量比PID控制器分别减小了62.5%,56.2%和46.6%,调节时间分别减小了10.32,18.46和24.18 s。
Abstract:
A Y-shaped tree fractal cooling channel was designed to improve the internal temperature uniformity of proton exchange membrane fuel cells and to achieve precise control of the cooling system mode. Numerical simulation of a single cell with a cooling channel was carried out using the Fluent software, and the effects of the coolant water temperature and flow rate on the surface temperature distribution of the proton exchange membrane and the polarization curve of the single cell were analyzed. Meanwhile, a PID controller model and an active disturbance rejection controller (ADRC) model were built using Simulink to control the temperature of the cell stack, and their advantages and disadvantages were compared. The results showed that when the coolant water mass flow rate is 1 g/s, the cooling effect of 333 K coolant water on the fuel cell is better than that of 298 K coolant water. The smaller the temperature difference on the surface of the proton exchange membrane is, the more uniform the temperature distribution is. When the coolant water temperature is 298 K, and the mass flow rate is 1.5 g/s, the maximum current density is 0.440 3 A/cm2. When the coolant water is preheated to 343 K, the mass flow rate is 6 g/s, the maximum current density is 0.476 8 A/cm2. The control effect of the ADRC controller is better than that of the PID controller. When the load current changes in three steps, the overshoot of the ADRC controller is 62.5%, 56.2%, and 46.6% less than that of the PID controller, and the regulation time is 10.32, 18.46, and 24.18 s shorter than that of the PID controller, respectively.

参考文献/References:

[1] 王峰,李茂德.电池热效应分析[J].电源技术,2010,34(3):288-291.
[2] SAW L H,POON H M,THIAM H S,et al. Novel thermal management system using mist cooling for Lithium-ion battery packs[J]. Applied Energy,2018,223:146-158.
[3] 杨昆鹏,杨海沦,裴后昌,等.风冷燃料电池结构优化及装配压力设计[J].电源技术,2023,47(3):362-365.
[4] 汪龙飞,罗燕,刘根战,等.冷却流道结构对锂电池组液冷性能的影响[J].武汉工程大学学报,2022,44(1):97-101.
[5] 彭明,夏强峰,蒋理想,等.阴极过量系数与流场布置对风冷燃料电池性能影响的数值模拟[J].化工学报,2023,74(10):4267-4276.
[6] 胡佳丽,赵春鹏,肖铎.水冷燃料电池空气供给系统建模与控制研究[J].太阳能学报,2021,42(9):428-433.
[7] 张婷婷,付鹏,文午,等.有轨电车氢燃料电池系统通风散热方法研究[J].电力机车与城轨车辆,2021,44(2):50-52,69.
[8] KAHRAMAN H, ORHAN M F. Flow field bipolar plates in a proton exchange membrane fuel cell: analysis & modeling[J]. Energy Conversion and Management,2017,133:363-384.
[9] IONESCU V. Simulating the effect of gas channel geometry on PEM fuel cell performance by finite element method[J]. Procedia Technology,2016,22:713-719.
[10] WAN X Y,CAO J Y,YANG X,et al. Research on the flow field of the PEMFC bipolar plate based on the tree-like fractal theory[J]. Fractals,2023,31(8):2340185.
[11] BOYD B, HOOMAN K. Air-cooled micro-porous heat exchangers for thermal management of fuel cells[J]. International Communications in Heat and Mass Transfer,2012,39(3):363-367.
[12] 陈姝彧.金属双极板水冷型质子交换膜燃料电池研究与设计[D].武汉:华中科技大学,2021.


相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-05-09
基金项目:国家自然科学基金(12002246);武汉工程大学第十五届研究生教育创新基金(CX2023206)
作者简介:王 旭,硕士研究生。Email: xu_wang2022@163.com
*通信作者:罗 燕,博士,讲师。Email: 9723805@qq.com
引文格式:王旭,张刚,杨侠,等.水冷质子交换膜燃料电池热管理研究[J]. 武汉工程大学学报,2025,47(4):448-454.
更新日期/Last Update: 2025-08-29