|本期目录/Table of Contents|

[1]刘思思,周 媛,付瑞新,等.五氟硫基脲衍生物的合成及其对人可溶性环氧化物水解酶的抑制活性[J].武汉工程大学学报,2025,47(05):473-479.[doi:10.19843/j.cnki.CN42-1779/TQ.202309014]
 LIU Sisi,ZHOU Yuan,FU Ruixin,et al.Synthesis of pentafluorosulfanyl urea derivatives and their inhibitory activity on human soluble epoxide hydrolase[J].Journal of Wuhan Institute of Technology,2025,47(05):473-479.[doi:10.19843/j.cnki.CN42-1779/TQ.202309014]
点击复制

五氟硫基脲衍生物的合成及其对人可溶性环氧化物水解酶的抑制活性
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年05期
页码:
473-479
栏目:
现代大化工
出版日期:
2025-10-31

文章信息/Info

Title:
Synthesis of pentafluorosulfanyl urea derivatives and their inhibitory activity on human soluble epoxide hydrolase
文章编号:
1674 - 2869(2025)05 - 0473- 07
作者:
1. 武汉工程大学化学与环境工程学院,湖北 武汉 430205;
2. 武汉熙瑞医药科技有限公司, 湖北 武汉 437000;
3. 武汉伯瑞恒医药科技有限公司, 湖北 武汉 437000

Author(s):
1. School of Chemistry and Environmental Engineering,Wuhan Institute of Technology,Wuhan 430205,China;
2. Wuhan Xirui Pharmaceutical Technology Co. Ltd., Wuhan 437000,China;
3. Wuhan Bo Ruiheng Pharmaceutical Technology Co. Ltd., Wuhan 437000,China

关键词:
Keywords:
分类号:
TQ463
DOI:
10.19843/j.cnki.CN42-1779/TQ.202309014
文献标志码:
A
摘要:
以4-五氟硫基苯胺和三光气为原料,经异氰酸酯合成、亲核加成、N-酰胺缩合和烷基化等反应,合成了7个新的含五氟硫基苯基的双取代脲衍生物。对人可溶性环氧化物水解酶(hsEH)抑制活性测试结果表明:1-(4-五氟硫基苯基)-3-(1-(3,3,3-三氟丙基)哌啶-4-基)脲的抑制活性弱于对照物(S)-1-(1-(2-甲基丁酰基)哌啶-4-基)-3-(4-(三氟甲氧基)苯基)脲,其他6个脲衍生物的抑制能力均强于对照物,其中,(S)-1-(1-(2-甲基丁酰基)哌啶-4-基)-3-(4-(五氟硫基)苯基)脲的抑制活性最强,在2 μg/mL质量浓度下的hsEH IC50为2.4 nmol/L。构效关系表明,目标分子中五氟硫基的引入和哌啶环上N-取代基团的水溶性对hsEH的抑制活性有较大影响。
Abstract:
Seven new bis-substituted urea derivatives containing pentafluorothiophenyl groups were synthesized from 4-(pentafluorosulfanyl)aniline and triphosgene through isocyanate synthesis, nucleophilic addition, N-amide condensation, and alkylation reactions. The results of the inhibition activity test on human soluble epoxide hydrolase (hsEH) showed that except for 1-(4-pentafluorothiophenyl)-3-(1-(3,3,3-trifluoropropyl) piperidin-4-yl) urea, which had weaker inhibitory activity than the control substance (S) -1- (1-(2-methylbutyryl) piperidin-4-yl)-3-(4-(trifluoromethoxy) phenyl) urea, the inhibitory ability of the other six urea derivatives was stronger than the control substance. Among them, (S)-1-(1- (2-methylbutyryl) piperidin-4-yl)-3-(4-(pentafluorothio) phenyl) urea had the strongest inhibitory activity, with an IC50 of 2.4 nmol/L at a mass concentration of 2 mg/mL. The structure-activity relationship indicates that the introduction of pentafluorosulfanyl groups in the target molecule and the water solubility of N-substituted groups on the pyridine ring have a significant impact on the inhibitory activity of hsEH.

参考文献/References:

[1] PACE-ASCIAK C R, ASOTRA S. Biosynthesis, catabolism, and biological properties of HPETEs, hydroperoxide derivatives of arachidonic acid [J]. Free Radical Biology & Medicine, 1989, 7(4): 409-433.
[2] NEWMAN J W, MORISSEAU C, HAMMOCK B D. Epoxide hydrolases: their roles and interactions with lipid metabolism [J]. Progress in Lipid Research, 2005, 44(1): 1-51.
[3] SPECTOR A A, FANG X, SNYDER G D, et al. Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function [J]. Progress in Lipid Research, 2004, 43(1): 55-90.
[4] FLEMING I, RUEBEN A, POPP R, et al. Epoxyeico-satrienoic acids regulate Trp channel dependent Ca2+ signaling and hyperpolarization in endothelial cells [J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27(12): 2612-2618.
[5] CODONY S, PUJOL E, PIZARRO J, et al. 2-oxaadamant-1-yl ureas as soluble epoxide hydrolase inhibitors: in vivo evaluation in a murine model of acute pancreatitis [J]. Journal of Medicinal Chemistry, 2020, 63(17): 9237-9257.
[6] SHEN H C, HAMMOCK B D. Discovery of inhibitors of soluble epoxide hydrolase: a target with multiple potential therapeutic indications [J]. Journal of Medicinal Chemistry, 2012, 55(5): 1789-1808.
[7] MARINO JR J P. Soluble epoxide hydrolase, a target with multiple opportunities for cardiovascular drug discovery [J]. Current Topics in Medicinal Chemistry, 2009, 9(5): 452-463.
[8] SHEN H C. Soluble epoxide hydrolase inhibitors: a patent review [J]. Expert Opinion on Therapeutic Patents, 2010, 20(7): 941-956.
[9] CHEN Y G, CHEN L, XU H S, et al. Structure-directed discovery of potent soluble epoxide hydrolase inhibitors for the treatment of inflammatory diseases [J]. Journal of Medicinal Chemistry, 2023, 66(4): 2979-3009.
[10] TSAI H J, HWANG S H, MORISSEAU C, et al. Pharmacokinetic screening of soluble epoxide hydrolase inhibitors in dogs [J]. European Journal of Pharmaceutical Sciences, 2010, 40(3): 222-238.
[11] LIU J Y, TSAI H J, HWANG S H, et al. Pharmacokinetic optimization of four soluble epoxide hydrolase inhibitors for use in a murine model of inflammation [J]. British Journal of Pharmacology, 2009, 156(2): 284-296.
[12] ROSE T E, MORISSEAU C, LIU J Y, et al. 1-aryl-3-(1-acylpiperidin-4-yl)urea inhibitors of human and murine soluble epoxide hydrolase: structure-activity relationships, pharmacokinetics, and reduction of inflammatory pain [J]. Journal of Medicinal Chemistry, 2010, 53(19): 7067-7075.
[13] LIANG Z B, ZHANG B, XU M, et al. 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea, a selective and potent dual inhibitor of soluble epoxide hydrolase and p38 kinase intervenes in Alzheimer’s signaling in human nerve cells [J]. ACS Chemical Neuroscience, 2019, 10(9): 4018-4030.
[14] 加利福尼亚大学董事会.可溶性环氧化物水解酶的改进抑制剂:200580043035.2 [P]. 2007-12-05.
[15] SHEPPARD W A. Arylsulfur pentafluorides [J]. Journal of the American Chemical Society, 1962, 84(16): 3064-3072.
[16] SAVOIE P R, WELCH J T. Preparation and utility of organic pentafluorosulfanyl-containing compounds [J]. Chemical Reviews, 2015, 115(2): 1130-1190.
[17] VERMA R D, KIRCHMEIER R L, SHREEVE J M. Chemistry of pentafluorosulfanyl compounds[M]//Advances in Inorganic Chemistry. Amsterdam: Elsevier, 1994: 125-169.
[18] WELCH J T, LIM D S. The synthesis and biological activity of pentafluorosulfanyl analogs of fluoxetine, fenfluramine, and norfenfluramine [J]. Bioorganic & Medicinal Chemistry, 2007, 15(21): 6659-6666.
[19] PETERS G. Reactions of secondary phosphine sulfides [J]. The Journal of Organic Chemistry, 1962, 27(6): 2189-2201.
[20] BASSETTO M, FERLA S, PERTUSATI F. Polyfluorinated groups in medicinal chemistry [J]. Future Medicinal Chemistry, 2015, 7(4): 527-546.
[21] SUN L Y, LI J R, BERA H, et al. Fragment-based approach to the design of 5-chlorouracil-linked-pyrazolo [1, 5-a] [1, 3, 5] triazines as thymidine phosphorylase inhibitors [J]. European Journal of Medicinal Chemistry, 2013, 70: 400-410.
[22] The regents of the university of California. Acyl piperidine inhibitors of soluble expoxide hydrolase: WO2013116690[P]. 2015-05-19.
[23] 黄明智, 陈正旺, 庞怀林, 等. N-[5-(3-甲基-2, 6-二氧-4-三氟甲基-2, 3-二氢嘧啶-1(6H)-基)苯基]-N′, N′二取代脲类化合物的合成及除草活性[J]. 农药, 2008, 47(5): 333-336.
[24] TAFESH A M, WEIGUNY J. A review of the selective catalytic reduction of aromatic nitro compounds into aromatic amines, isocyanates, carbamates, and ureas using CO [J]. Chemical Reviews, 1996, 96(6): 2035-2052.
[25] 王莉莉, 唐辉, 张晓春. 有机叠氮化合物的合成与应用进展Ⅱ.有机叠氮化合物在有机合成中的应用(2)[J]. 化工科技, 2010, 18(3): 65-69.
[26] 马德强,丁建生,宋锦宏.有机异氰酸酯生产技术进展[J]. 化工进展, 2007, 26(5): 668-673.
[27] 潘鹤林, 田恒水, 朱云峰. 异氰酸酯类合成方法[J]. 上海化工, 2002, 27(3): 34-36.
[28] 牟其明, 薛翠花, 向明礼, 等. 一锅法合成手性双取代不对称脲[J]. 四川大学学报(自然科学版), 2003, 40(1): 178-180.
[29] 龚盛昭, 杨卓如, 程江. 酪氨酸酶抑制剂IC50值的计算方法及其验证[J]. 日用化学工业, 2007, 37(3): 149-151, 155.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-09-27
基金项目:湖北省教育厅科学研究计划指导性项目(B2019055)
作者简介:刘思思,硕士研究生。Email:1954687582@qq.com
*通信作者:尹传奇,博士,教授。Email:zhyfyin@126.com
引文格式:刘思思,周媛,付瑞新,等. 五氟硫基脲衍生物的合成及其对人可溶性环氧化物水解酶的抑制活性[J]. 武汉工程大学学报,2025,47(5):473-479.

更新日期/Last Update: 2025-11-03