|本期目录/Table of Contents|

[1]翟孟祥,杨宏印*,刘卫军,等.日照作用下混凝土曲线箱梁竖向温度梯度分析[J].武汉工程大学学报,2025,47(05):571-577.[doi:10.19843/j.cnki.CN42-1779/TQ.202207006]
 ZHAI Mengxiang,YANG Hongyin*,LIU Weijun,et al.Analysis of vertical temperature gradient of concrete box girder bridge under sunshine action[J].Journal of Wuhan Institute of Technology,2025,47(05):571-577.[doi:10.19843/j.cnki.CN42-1779/TQ.202207006]
点击复制

日照作用下混凝土曲线箱梁竖向温度梯度分析
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年05期
页码:
571-577
栏目:
智能制造
出版日期:
2025-10-31

文章信息/Info

Title:
Analysis of vertical temperature gradient of concrete box girder bridge under sunshine action
文章编号:
1674 - 2869(2025)05 - 0571 - 07
作者:
1. 武汉工程大学土木工程与建筑学院,湖北 武汉 430074;
2. 中建三局集团有限公司,湖北 武汉 430070;
3. 亿耀(福建)建设有限公司,福建 莆田 351100

Author(s):
1. School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430074, China;
2. China Construction Third Engineering Bureau Group Co., Ltd., Wuhan 430070, China;
3. Yiyao (Fujian) Engineering Co., Ltd., Putian 351100,China

关键词:
Keywords:
分类号:
U448.36
DOI:
10.19843/j.cnki.CN42-1779/TQ.202207006
文献标志码:
A
摘要:
为研究混凝土曲线箱梁桥的温度分布情况以及气象参数对混凝土箱梁桥温度分布的影响,基于现场实测数据,以武汉市某混凝土曲线箱梁桥为对象,采用热仿真软件TAITHERM对日照作用下的混凝土箱梁桥温度场进行了数值模拟。模型综合考虑了环境温度、风速和太阳辐射的影响,分析了混凝土箱梁桥竖向温度梯度的分布模式,并与实测值进行了对比,进行了影响温度分布的气象因素的敏感性分析。结果表明:混凝土曲线箱梁桥横截面的温度模拟结果与现场实测数据趋势一致,表明TAITHERM模型计算桥梁结构温度场是准确合理的;武汉地区混凝土曲线箱梁桥曲线内外侧最不利温度梯度有不同的规律——顶板与腹板的温差是内侧大于外侧,底板与腹板的温差是外侧大于内侧;通过对比仿真温度梯度模式与规范给出的温度梯度模式,发现在武汉地区距离顶板0.4?m范围内的竖向温度梯度数值处于规范值范围内,但距离顶板0.4~0.6?m时竖向温度梯度数值会超出规范值;在影响温度分布的各种因素中,风速和云层遮挡系数对竖向温度梯度影响最大,辐射次之,大气日温差影响最小。该研究对于混凝土箱梁桥的设计、日常养护等工作具有一定的理论研究和工程应用价值。
Abstract:
In order to study the temperature distribution of concrete curved box girder bridge and the influence of meteorological parameters on the temperature distribution of concrete box girder bridge, based on field measured data, this paper took a concrete curved box girder bridge in Wuhan as the object, and used the thermal simulation software TAITHERM to carry out numerical simulation of the temperature field of concrete box girder bridge under the action of sunlight. The model comprehensively considered the influence of ambient temperature, wind speed, and solar radiation, analyzed the distribution mode of vertical temperature gradient of concrete box girder bridge, compared with the measured value, and analyzed the sensitivity of meteorological factors affecting temperature distribution. The results showed that the temperature simulation results of the cross section of the concrete curved box girder bridge are consistent with the trend of the field measured data, which indicates that the TAITHERM model is accurate and reasonable in calculating the temperature field of the bridge structure. The most unfavorable temperature gradient inside and outside the curve of the concrete curved box girder bridge in Wuhan area has different patterns: the temperature difference between the top plate and the web is greater inside than outside, and the temperature difference between the bottom plate and the web is greater outside than inside. By comparing the simulated temperature gradient mode with the temperature gradient mode provided by the specifications, it was found that the vertical temperature gradient value within the range of 0.4 m from the roof in Wuhan area is within the standard value range, but the vertical temperature gradient value exceeds the standard value when it is 0.4-0.6 m from the roof. Among various factors affecting temperature distribution, wind speed and cloud cover coefficient have the greatest impact on vertical temperature gradient, followed by radiation, and the smallest impact on daily atmospheric temperature difference. The above research conclusions have important theoretical value and engineering application for the design and daily maintenance of concrete box girder bridge.

参考文献/References:

[1] 沈杰.曲线刚构桥的空间受力分析研究[J].交通世界,2021,2(30):80-81.
[2] 冯升阳,郭增伟,赵付强.小半径曲线连续箱梁桥恒载应力的空间分布特性分析[J].科学技术与工程,2021,21(36):15617-15623.
[3] 李特.混凝土曲线箱梁桥温度场及其作用效应分析[D].大连:大连理工大学,2020.
[4] 梁立农,肖龙峰,肖金梅.混凝土桥梁温度作用模式及效应规律[J].广东公路交通,2014(3):16-20,27.
[5] 段凯凯.基于实测温度场的曲线连续刚构桥温度效应分析[D].西安:长安大学,2020.
[6] 马志元,刘江,刘永健,等.钢-混组合梁桥有效温度取值的地域差异性[J].浙江大学学报(工学版) ,2022,56(5):909-919.
[7] 钟守砚.混凝土曲线连续箱梁桥温度效应分析[D].西安:长安大学,2013.
[8] 王文利,陈松男,张文娇,等.气候环境因素作用下预应力混凝土箱梁桥温度场分析[J].低温建筑技术,2022,44(2):118-122.
[9] MIAO C Q,SHI C H.Temperature gradient and its effect on flat steel box girder of long-span suspension bridge[J].Science China Technological Sciences,2013,56(8):1929-1939.
[10] 赵雄飞.大跨度连续钢箱梁桥温度场及其效应分析[D].广州:华南理工大学,2016.
[11] ZHU J S, MENG Q L. Fine temperature effect analysis-based time-varying dynamic properties evaluation of long-span suspension bridges in natural environments[J].Journal of Bridge Engineering,2008,23(10):55-68.
[12] 李小国,黄炜煜,余玲玲.大跨径连续刚构桥箱梁日照温度效应分析[J].西部交通科技,2019(3):112-115.
[13] 朱超,卢靖宇,代希华,等.大尺寸钢箱梁温湿度场分析[J].桥梁建设,2021,51(4):81-87.
[14] 徐行军,黄树榕.桥梁大体积混凝土浇筑过程的温度场及温度应力[J].武汉工程大学学报,2010,32(1):65-69,73.
[15] YAN P. Research on temperature field and temperature stress of large span concrese cable-stayed bridge girder [J]. Applied Mechanics and Materiaes,2012,178/179/180/181:2075-2080 .
[16] MOSAVI A A,SERACINO R,RIZKALLA S.Effect of temperature on daily modal variability of a steel-concrete composite bridge[J].Journal of Bridge Engineering,2012,17(6):979-983.
[17] 高大峰,董旭,陈凯旋,等.预应力混凝土连续箱梁桥温度效应研究[J].公路工程,2016,41(2):80-83.
[18] 公路桥涵通用设计规范:JTG D60-2015[S].北京:人民交通出版社,2015.
[19] 姚彬,李国平,陈贤俊,等.混凝土箱梁日照温度效应研究[J].中国市政工程,2019(4):81-85,119-120.
[20] 李克冰.日照条件下铁路钢混组合梁温度效应分析[J].铁道建筑,2023,63(5):73-77.
[21] 刘永健,刘江,张宁.桥梁结构日照温度作用研究综述[J].土木工程学报,2019,52(5):59-78.
[22] 周云,郑佳缘,郝官旺,等.基于气象大数据的大跨桥梁温度效应预测方法[J].湖南大学学报(自然科学版),2024,51(7):164-176.
[23] 徐丰,周孟林,孟康.斜拉桥索塔温度效应分析[J].武汉工程大学学报,2022,44(3):336-340.

相似文献/References:

[1]舒安庆,王,吴开斌,等.螺旋焊与对接焊的有限元模拟[J].武汉工程大学学报,2008,(01):98.
 SHU An qing,WANG Wei,WU Kai bin,et al.The Finiteelement Analysis on spiral welding and butt welding[J].Journal of Wuhan Institute of Technology,2008,(05):98.
[2]郑小涛,陈瑶,喻九阳,等.螺栓法兰连接系统的热应力场[J].武汉工程大学学报,2014,(06):37.[doi:103969/jissn16742869201406009]
 ZHENG Xiao tao,CHEN Yao,YU Jiu yang,et al.Thermal stress of bolted flanged system[J].Journal of Wuhan Institute of Technology,2014,(05):37.[doi:103969/jissn16742869201406009]
[3]喻九阳,王明伍,郑小涛,等.高温法兰连接系统温度场的有限元分析[J].武汉工程大学学报,2014,(10):31.[doi:103969/jissn167428692014010007]
 YU Jiu yang,WANG Ming wu,ZHENG Xiao tao,et al.Temperature field analysis of flanged joints at high temperature based on finite element method[J].Journal of Wuhan Institute of Technology,2014,(05):31.[doi:103969/jissn167428692014010007]
[4]郑小涛,黄 苏,喻九阳,等.高温法兰接头的稳态热分析与密封性能研究[J].武汉工程大学学报,2017,39(04):387.[doi:10. 3969/j. issn. 1674?2869. 2017. 04. 013]
 ZHENG Xiaotao,HUANG Su,YU Jiuyang,et al.Steady State Thermal Analysis and Sealing Performance of Flange Joint at High Temperature[J].Journal of Wuhan Institute of Technology,2017,39(05):387.[doi:10. 3969/j. issn. 1674?2869. 2017. 04. 013]
[5]周 缘,程海潜*,李 清,等.大体积混凝土水管冷却关键参数的敏感性研究[J].武汉工程大学学报,2020,42(02):202.[doi:10.19843/j.cnki.CN42-1779/TQ.201909038]
 ZHOU Yuan,CHENG Haiqian*,LI Qing,et al.Sensitivity Analysis of Key Parameters of Mass Concrete with Water Pipe Cooling[J].Journal of Wuhan Institute of Technology,2020,42(05):202.[doi:10.19843/j.cnki.CN42-1779/TQ.201909038]
[6]葛一凡,秦实宏*,陈 彪,等.电磁发射轨道截面瞬态电磁热的耦合场分析[J].武汉工程大学学报,2022,44(03):331.[doi:10.19843/j.cnki.CN42-1779/TQ.202111021]
 GE Yifan,QIN Shihong*,CHEN Biao,et al.Transient Electromagnetic Thermal Coupling Field of Electromagnetic Launch Rail Section[J].Journal of Wuhan Institute of Technology,2022,44(05):331.[doi:10.19843/j.cnki.CN42-1779/TQ.202111021]
[7]朱鑫姝,殷 勇,邓佩刚*.数据机房机架式服务器空气流动的数值模拟[J].武汉工程大学学报,2022,44(06):683.[doi:10.19843/j.cnki.CN42-1779/TQ.202207031]
 ZHU Xinshu,YIN Yong,DENG Peigang *.Numerical Simulation of Rack Server Air Flow in Data Center[J].Journal of Wuhan Institute of Technology,2022,44(05):683.[doi:10.19843/j.cnki.CN42-1779/TQ.202207031]
[8]彭 娅,杨宏印*,王昌军,等.基于监测数据的混凝土箱梁桥竖向温度梯度分布研究[J].武汉工程大学学报,2025,47(02):231.[doi:10.19843/j.cnki.CN42-1779/TQ.202301008]
 PENG Ya,YANG Hongyin*,WANG Changjun,et al.Monitoring data-based study on vertical temperature gradient distribution in concrete box girder bridges[J].Journal of Wuhan Institute of Technology,2025,47(05):231.[doi:10.19843/j.cnki.CN42-1779/TQ.202301008]

备注/Memo

备注/Memo:
收稿日期:2022-07-07
基金项目:国家自然科学基金(51708429);武汉工程大学研究生教育创新基金(CX2024537);湖北省建设科技计划项目(2023011);武汉市城建局科技项目(202359);福建省住建厅科技研究项目(2022-K-15)
作者简介:翟孟祥,硕士研究生。Email:zhaimengxiang@stu.wit.edu.cn
*通信作者:杨宏印,博士,教授。Email:yanghongyin@wit.edu.cn
引文格式:翟孟祥,杨宏印,刘卫军,等. 日照作用下混凝土曲线箱梁桥竖向温度梯度分析[J]. 武汉工程大学学报,2025,47(5):571-577.

更新日期/Last Update: 2025-11-03