[1] 许鹏云, 李晶, 陈洲, 等. 红外光谱分析技术在浮选过程中的应用研究进展[J]. 光谱学与光谱分析, 2017, 37(8): 2389-2396.
[2] 吕鹏龙. 浮选工艺对制备水煤浆性能的影响研究[J]. 煤炭加工与综合利用, 2024(1): 88-90.
[3] FILIPPOV L O, SEVEROV V V, FILIPPOVA I V. An overview of the beneficiation of iron ores via reverse cationic flotation [J]. International Journal of Mineral Processing, 2014, 127: 62-69.
[4] WANG L, PENG Y, RUNGE K, et al. A review of entrainment: mechanisms, contributing factors and modelling in flotation [J]. Minerals Engineering, 2015, 70: 77-91.
[5] MAHONEY J, MONROE C, SWARTLEY A M, et al. Surface analysis using X-ray photoelectron spectroscopy [J]. Spectroscopy Letters,2020,53(10): 726-736.
[6] NORDLING C, HAGSTR?M S, SIEGBAHN K. Application of electron spectroscopy to chemical analysis [J]. Zeitschrift Für Physik, 1964, 178(5): 433-438.
[7] 李雪婧, 赵国利, 季洪海, 等. X射线光电子能谱在电催化材料研究中的应用[J]. 当代化工, 2022, 51(3): 687-690, 756.
[8] QIAN G J, LI Y B, GERSON A R. Applications of surface analytical techniques in Earth Sciences [J]. Surface Science Reports, 2015, 70(1): 86-133.
[9] GOH S W, BUCKLEY A N, GONG B, et al. Thiolate layers on metal sulfides characterised by XPS, ToF-SIMS and NEXAFS spectroscopy [J]. Minerals Engineering, 2008, 21(12/13/14): 1026-1037.
[10] SHUTTHANANDAN V, NANDASIRI M, ZHENG J M, et al. Applications of XPS in the characterization of battery materials [J]. Journal of Electron Spectroscopy and Related Phenomena, 2019, 231: 2-10.
[11] 杨志朋, 李仕敏, 宋世杰, 等. X射线光电子能谱(XPS)在无铅基陶瓷分析中的应用[J]. 中国无机分析化学, 2025, 15(1): 21-32.
[12] 乐韵琳, 冯均利, 庞兴志, 等. X射线光电子能谱在镁合金研究中的应用[J]. 中国无机分析化学, 2023, 13(10): 1065-1076.
[13] DAVIES P R, MORGAN D J. Practical guide for X-ray photoelectron spectroscopy: applications to the study of catalysts [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2020, 38(3): 033204.
[14] 陈满堂, 王楠, 朱丽华. X射线光电子能谱在环境催化研究中的应用[J]. 环境化学, 2017, 36(10): 2140-2146.
[15] 吴则嘉. X射线光电子能谱技术简介[J]. 腐蚀与防护, 1982, 3(6): 44-46.
[16] 张少鸿, 莫家媚, 苏秋成. 基于常规X射线光电子能谱(XPS)和X射线衍射(XRD)技术的透明柔性导电膜薄膜厚度表征[J]. 中国无机分析化学, 2025, 15(1): 118-125.
[17] 翁晓琳. 锌空气电池的关键部件及其多孔导电陶瓷基底负载银阴极的研究[D]. 广州:华南理工大学,2018.
[18] CHANG Q R, GUO S Y, ZHANG X L. Radiation shielding polymer composites: ray-interaction mechanism, structural design, manufacture and biomedical applications [J]. Materials & Design, 2023, 233: 112253.
[19] 杨文超, 刘殿方, 高欣, 等. X射线光电子能谱应用综述[J]. 中国口岸科学技术, 2022, 4(2): 30-37.
[20] 贾双珠, 李长安. X射线光电子能谱在新型催化材料表征中的应用[J]. 分析试验室, 2016, 35(7): 862-868.
[21] 郭沁林. X射线光电子能谱[J]. 物理,2007(5): 405-410.
[22] 龚力, 陈建, 谢方艳, 等. 光电子能谱仪新增功能研发[J]. 实验室研究与探索,2011,30(11):231-233.
[23] BAGUS P S, ILTON E S, NELIN C J. The interpretation of XPS spectra: insights into materials properties [J]. Surface Science Reports,2013,68(2): 273-304.
[24] 刘丽婷, 王岩, 李怡雪, 等. XPS表面分析技术在生物医用金属材料研究中的应用[J]. 陕西师范大学学报(自然科学版), 2023, 51(3): 29-42.
[25] 王岩. 光电子能谱技术在模型催化剂研究中的应用[J]. 广东化工, 2024, 51(16): 1-3, 9.
[26] 邰仁忠. X射线物理学[J]. 物理, 2021(8):501-511.
[27] 袁欢欣, 欧阳健明. X射线光电子能谱在配合物研究中的应用及其研究进展[J]. 光谱学与光谱分析, 2007, 27(2): 395-399.
[28] 吴正龙, 刘洁. 现代X光电子能谱(XPS)分析技术[J]. 现代仪器, 2006, 12(1): 50-53.
[29] STEVIE F A, DONLEY C L. Introduction to X-ray photoelectron spectroscopy [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2020, 38(6): 063204.
[30] 李少平. 菱锰矿与钙镁碳酸盐矿物晶体结构、表面特性和浮选行为研究[D]. 赣州:江西理工大学,2019.
[31] 张素伟, 姚雅萱, 高慧芳, 等. X射线光电子能谱技术在材料表面分析中的应用[J]. 计量科学与技术, 2021(1): 40-44.
[32] 宋世杰, 张磊, 唐梦奇, 等. X射线光电子能谱技术在无铅焊料中的应用[J]. 冶金分析, 2024, 44(2): 1-9.
[33] 文瑜琼, 曹亚鹏, 温翀, 等. X射线光电子能谱(XPS)在催化产氢研究中的应用[J]. 中国无机分析化学, 2025, 15(1): 1-20.
[34] 王珊珊, 彭绍春, 高培峰, 等. X射线光电子能谱(XPS)/紫外光电子能谱(UPS)/反光电子能谱(IPES)测定半导体薄膜材料全能级结构[J]. 中国无机分析化学, 2025, 15(1): 33-43.
[35] GUO W D, ZHU Y M, HAN Y X, et al. Flotation performance and adsorption mechanism of a new collector 2-(carbamoylamino) lauric acid on quartz surface[J]. Minerals Engineering,2020,153:106343.
[36] 周逸凡, 杨慕紫, 佘峰权, 等. X射线光电子能谱在固态锂离子电池界面研究中的应用[J]. 物理学报, 2021, 70(17): 58-76.
[37] CAO J, YANG J, WU D D, et al. Surface modification of hemimorphite by using ammonium carbamate and its response to flotation [J]. Applied Surface Science, 2022, 605: 154775.
[38] LI D, YIN W Z, XUE J W, et al. Solution chemistry of carbonate minerals and its effects on the flotation of hematite with sodium oleate [J]. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(7): 736-744.
[39] 张宇新, 陈兰兰, 褚浩然, 等. 超声预处理对锂辉石矿物浮选分离的影响[J]. 中国有色金属学报, 2024, 34(2): 586-597.
[40] VANDER WAL R L, BRYG V M, HAYS M D. XPS analysis of combustion aerosols for chemical composition, surface chemistry, and carbon chemical state [J]. Analytical Chemistry, 2011, 83(6): 1924-1930.
[41] NANSé G, PAPIRER E, FIOUX P, et al. Fluorina-tion of carbon blacks: an X-ray photoelectron spectroscopy study: I. a literature review of XPS studies of fluorinated carbons. XPS investigation of some reference compounds[J]. Carbon,1997,35(2): 175-194.
[42] WANG J, HE Y Q, LI H, et al. The molecular structure of Inner Mongolia lignite utilizing XRD, solid state 13C NMR, HRTEM and XPS techniques [J]. Fuel, 2017, 203: 764-773.
[43] LU L, XIONG W, ZHU Y G, et al. Depression behaviors of N-thiourea-maleamic acid and its adsorption mechanism on galena in Mo-Pb flotation separation [J]. International Journal of Mining Science and Technology, 2022, 32(1): 181-189.
[44] GAO J D, SUN W, HU Y H, et al. Propyl gallate: a novel collector for flotation separation of fluorite from calcite [J]. Chemical Engineering Science, 2019, 193: 255-263.
[45] FENG Q C, ZHAO W J, WEN S M, et al. Activa-tion mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector [J]. Separation and Purification Technology, 2017,178: 193-199.
[46] WANG Z J, WU H Q, XU Y B, et al. The effect of dissolved calcite species on the flotation of bastnaesite using sodium oleate [J]. Minerals Engineering, 2020, 145: 106095.
[47] HAN H L, YIN W Z, YANG B, et al. Adsorption behavior of sodium oleate on iron minerals and its effect on flotation kinetics [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647: 129108.
[48] HU X , LUO X P, LIU Z S, et al. Flotation separa-tion of feldspar from quartz using sodium fluosilicate as a selective depressant [J]. Rare Metals, 2024, 43(3): 1288-1300.
[49] DONG L Y, JIAO F, QIN W Q, et al. Selective flotation of scheelite from calcite using xanthan gum as depressant [J]. Minerals Engineering, 2019, 138: 14-23.