|本期目录/Table of Contents|

[1]张臻悦,李钰,郭文达*,等. X射线光电子能谱在矿物浮选表界面研究中的应用进展 [J].武汉工程大学学报,2025,47(06):591-599,613.[doi:10.19843/j.cnki.CN42-1779/TQ.202503015]
 ZHANG Zhenyue,LI Yu,GUO Wenda*,et al. Advances in the application of X-ray photoelectron spectroscopy in interfacial phenomena in mineral flotation [J].Journal of Wuhan Institute of Technology,2025,47(06):591-599,613.[doi:10.19843/j.cnki.CN42-1779/TQ.202503015]
点击复制

X射线光电子能谱在矿物浮选表界面研究中的应用进展
(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年06期
页码:
591-599,613
栏目:
现代大化工
出版日期:
2025-12-31

文章信息/Info

Title:
Advances in the application of X-ray photoelectron spectroscopy in interfacial phenomena in mineral flotation
文章编号:
1674 - 2869(2025)06 - 0591 - 09
作者:
张臻悦12李钰1郭文达*2孙宁杰2刘德峰2吴汉军1徐彪3
1. 武汉工程大学化学与环境工程学院,湖北 武汉 430205;
2. 武汉工程大学兴发矿业学院,湖北 武汉 430074;
3. 武钢中冶工业技术服务有限公司,湖北 武汉 430070
Author(s):
ZHANG Zhenyue12 LI Yu1 GUO Wenda*2 SUN Ningjie2 LIU Defeng2 WU Hanjun1 XU Biao3
1. School of Chemistry and Environmental Engineering,Wuhan Institute of Technology,Wuhan 430205,China;
2. Xingfa School of Mining Engineering,Wuhan Institute of Technology,Wuhan 430074,China;
3. Wugang Zhongye Industrial Technology Service Co., Ltd,Wuhan 430070,China

关键词:
X射线光电子能谱浮选机理应用进展
Keywords:
X-ray photoelectron spectroscopy flotation mechanism application advance
分类号:
TD91
DOI:
10.19843/j.cnki.CN42-1779/TQ.202503015
文献标志码:
A
摘要:
随着现代仪器检测技术的不断进步,越来越多的检测手段被引入矿物浮选的机理研究中,其中X射线光电子能谱(XPS)作为一种先进的表面表征分析技术,在揭示矿物浮选过程的微观机制方面发挥着重要作用。综述了XPS分析原理,梳理了XPS的定量与定性研究,总结了XPS在矿物浮选机理研究方面的应用进展。通过XPS可以分析矿物表面元素组成和化学态变化,明确矿物中元素的存在形式,确定浮选药剂的特征原子在矿物表面吸附的化学态,从而可以探究矿物表面活性位点和药剂之间的吸附作用机制。若辅以元素含量及化学态组分含量分析,还可进一步判定药剂吸附能力的强弱。最后,对XPS技术在矿物浮选领域的发展进行了展望,未来将继续完善XPS仪器和理论发展方面的研究。随着XPS与其他多种手段的结合,XPS在矿物浮选机理研究中的应用将更加广泛,为矿产资源的开发利用做出更多贡献。
Abstract:
With the advancement of modern instrumental detection techniques, an increasing number of analytical?methods are being applied to investigate the mechanisms of mineral flotation. Among these, X-ray photoelectron spectroscopy (XPS)?serves as a powerful surface characterization technique and plays a significant role in elucidating the microscopic mechanisms of the mineral flotation process. In this paper, we systematically summarized the fundamental principles of XPS analysis, reviewed its applications in both qualitative and quantitative studies, and outlined recent progress in utilizing XPS to explore flotation mechanisms. XPS enables the analysis of elemental composition and chemical state changes on mineral surfaces, clarifies the speciation of elements in minerals, and identifies the chemical states of characteristic atoms from flotation reagents adsorbed on mineral surfaces. This information helps reveal the mechanisms of adsorption between active sites on mineral surfaces and reagent molecules. When combined with elemental content and chemical speciation analysis, XPS can further assess the relative adsorption capacity of reagents. Future prospects for XPS technology in the field of mineral flotation are discussed, including ongoing improvements in instrumentation and theoretical developments. As XPS is increasingly integrated with other analytical techniques, its applications in mineral flotation research are expected to expand, thereby contributing more significantly to the development and utilization of mineral resources.

参考文献/References:

[1] 许鹏云, 李晶, 陈洲, 等. 红外光谱分析技术在浮选过程中的应用研究进展[J]. 光谱学与光谱分析, 2017, 37(8): 2389-2396.
[2] 吕鹏龙. 浮选工艺对制备水煤浆性能的影响研究[J]. 煤炭加工与综合利用, 2024(1): 88-90.
[3] FILIPPOV L O, SEVEROV V V, FILIPPOVA I V. An overview of the beneficiation of iron ores via reverse cationic flotation [J]. International Journal of Mineral Processing, 2014, 127: 62-69.
[4] WANG L, PENG Y, RUNGE K, et al. A review of entrainment: mechanisms, contributing factors and modelling in flotation [J]. Minerals Engineering, 2015, 70: 77-91.
[5] MAHONEY J, MONROE C, SWARTLEY A M, et al. Surface analysis using X-ray photoelectron spectroscopy [J]. Spectroscopy Letters,2020,53(10): 726-736.
[6] NORDLING C, HAGSTR?M S, SIEGBAHN K. Application of electron spectroscopy to chemical analysis [J]. Zeitschrift Für Physik, 1964, 178(5): 433-438.
[7] 李雪婧, 赵国利, 季洪海, 等. X射线光电子能谱在电催化材料研究中的应用[J]. 当代化工, 2022, 51(3): 687-690, 756.
[8] QIAN G J, LI Y B, GERSON A R. Applications of surface analytical techniques in Earth Sciences [J]. Surface Science Reports, 2015, 70(1): 86-133.
[9] GOH S W, BUCKLEY A N, GONG B, et al. Thiolate layers on metal sulfides characterised by XPS, ToF-SIMS and NEXAFS spectroscopy [J]. Minerals Engineering, 2008, 21(12/13/14): 1026-1037.
[10] SHUTTHANANDAN V, NANDASIRI M, ZHENG J M, et al. Applications of XPS in the characterization of battery materials [J]. Journal of Electron Spectroscopy and Related Phenomena, 2019, 231: 2-10.
[11] 杨志朋, 李仕敏, 宋世杰, 等. X射线光电子能谱(XPS)在无铅基陶瓷分析中的应用[J]. 中国无机分析化学, 2025, 15(1): 21-32.
[12] 乐韵琳, 冯均利, 庞兴志, 等. X射线光电子能谱在镁合金研究中的应用[J]. 中国无机分析化学, 2023, 13(10): 1065-1076.
[13] DAVIES P R, MORGAN D J. Practical guide for X-ray photoelectron spectroscopy: applications to the study of catalysts [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2020, 38(3): 033204.
[14] 陈满堂, 王楠, 朱丽华. X射线光电子能谱在环境催化研究中的应用[J]. 环境化学, 2017, 36(10): 2140-2146.
[15] 吴则嘉. X射线光电子能谱技术简介[J]. 腐蚀与防护, 1982, 3(6): 44-46.
[16] 张少鸿, 莫家媚, 苏秋成. 基于常规X射线光电子能谱(XPS)和X射线衍射(XRD)技术的透明柔性导电膜薄膜厚度表征[J]. 中国无机分析化学, 2025, 15(1): 118-125.
[17] 翁晓琳. 锌空气电池的关键部件及其多孔导电陶瓷基底负载银阴极的研究[D]. 广州:华南理工大学,2018.
[18] CHANG Q R, GUO S Y, ZHANG X L. Radiation shielding polymer composites: ray-interaction mechanism, structural design, manufacture and biomedical applications [J]. Materials & Design, 2023, 233: 112253.
[19] 杨文超, 刘殿方, 高欣, 等. X射线光电子能谱应用综述[J]. 中国口岸科学技术, 2022, 4(2): 30-37.
[20] 贾双珠, 李长安. X射线光电子能谱在新型催化材料表征中的应用[J]. 分析试验室, 2016, 35(7): 862-868.
[21] 郭沁林. X射线光电子能谱[J]. 物理,2007(5): 405-410.
[22] 龚力, 陈建, 谢方艳, 等. 光电子能谱仪新增功能研发[J]. 实验室研究与探索,2011,30(11):231-233.
[23] BAGUS P S, ILTON E S, NELIN C J. The interpretation of XPS spectra: insights into materials properties [J]. Surface Science Reports,2013,68(2): 273-304.
[24] 刘丽婷, 王岩, 李怡雪, 等. XPS表面分析技术在生物医用金属材料研究中的应用[J]. 陕西师范大学学报(自然科学版), 2023, 51(3): 29-42.
[25] 王岩. 光电子能谱技术在模型催化剂研究中的应用[J]. 广东化工, 2024, 51(16): 1-3, 9.
[26] 邰仁忠. X射线物理学[J]. 物理, 2021(8):501-511.
[27] 袁欢欣, 欧阳健明. X射线光电子能谱在配合物研究中的应用及其研究进展[J]. 光谱学与光谱分析, 2007, 27(2): 395-399.
[28] 吴正龙, 刘洁. 现代X光电子能谱(XPS)分析技术[J]. 现代仪器, 2006, 12(1): 50-53.
[29] STEVIE F A, DONLEY C L. Introduction to X-ray photoelectron spectroscopy [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2020, 38(6): 063204.
[30] 李少平. 菱锰矿与钙镁碳酸盐矿物晶体结构、表面特性和浮选行为研究[D]. 赣州:江西理工大学,2019.
[31] 张素伟, 姚雅萱, 高慧芳, 等. X射线光电子能谱技术在材料表面分析中的应用[J]. 计量科学与技术, 2021(1): 40-44.
[32] 宋世杰, 张磊, 唐梦奇, 等. X射线光电子能谱技术在无铅焊料中的应用[J]. 冶金分析, 2024, 44(2): 1-9.
[33] 文瑜琼, 曹亚鹏, 温翀, 等. X射线光电子能谱(XPS)在催化产氢研究中的应用[J]. 中国无机分析化学, 2025, 15(1): 1-20.
[34] 王珊珊, 彭绍春, 高培峰, 等. X射线光电子能谱(XPS)/紫外光电子能谱(UPS)/反光电子能谱(IPES)测定半导体薄膜材料全能级结构[J]. 中国无机分析化学, 2025, 15(1): 33-43.
[35] GUO W D, ZHU Y M, HAN Y X, et al. Flotation performance and adsorption mechanism of a new collector 2-(carbamoylamino) lauric acid on quartz surface[J]. Minerals Engineering,2020,153:106343.
[36] 周逸凡, 杨慕紫, 佘峰权, 等. X射线光电子能谱在固态锂离子电池界面研究中的应用[J]. 物理学报, 2021, 70(17): 58-76.
[37] CAO J, YANG J, WU D D, et al. Surface modification of hemimorphite by using ammonium carbamate and its response to flotation [J]. Applied Surface Science, 2022, 605: 154775.
[38] LI D, YIN W Z, XUE J W, et al. Solution chemistry of carbonate minerals and its effects on the flotation of hematite with sodium oleate [J]. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(7): 736-744.
[39] 张宇新, 陈兰兰, 褚浩然, 等. 超声预处理对锂辉石矿物浮选分离的影响[J]. 中国有色金属学报, 2024, 34(2): 586-597.
[40] VANDER WAL R L, BRYG V M, HAYS M D. XPS analysis of combustion aerosols for chemical composition, surface chemistry, and carbon chemical state [J]. Analytical Chemistry, 2011, 83(6): 1924-1930.
[41] NANSé G, PAPIRER E, FIOUX P, et al. Fluorina-tion of carbon blacks: an X-ray photoelectron spectroscopy study: I. a literature review of XPS studies of fluorinated carbons. XPS investigation of some reference compounds[J]. Carbon,1997,35(2): 175-194.
[42] WANG J, HE Y Q, LI H, et al. The molecular structure of Inner Mongolia lignite utilizing XRD, solid state 13C NMR, HRTEM and XPS techniques [J]. Fuel, 2017, 203: 764-773.
[43] LU L, XIONG W, ZHU Y G, et al. Depression behaviors of N-thiourea-maleamic acid and its adsorption mechanism on galena in Mo-Pb flotation separation [J]. International Journal of Mining Science and Technology, 2022, 32(1): 181-189.
[44] GAO J D, SUN W, HU Y H, et al. Propyl gallate: a novel collector for flotation separation of fluorite from calcite [J]. Chemical Engineering Science, 2019, 193: 255-263.
[45] FENG Q C, ZHAO W J, WEN S M, et al. Activa-tion mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector [J]. Separation and Purification Technology, 2017,178: 193-199.
[46] WANG Z J, WU H Q, XU Y B, et al. The effect of dissolved calcite species on the flotation of bastnaesite using sodium oleate [J]. Minerals Engineering, 2020, 145: 106095.
[47] HAN H L, YIN W Z, YANG B, et al. Adsorption behavior of sodium oleate on iron minerals and its effect on flotation kinetics [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647: 129108.
[48] HU X , LUO X P, LIU Z S, et al. Flotation separa-tion of feldspar from quartz using sodium fluosilicate as a selective depressant [J]. Rare Metals, 2024, 43(3): 1288-1300.
[49] DONG L Y, JIAO F, QIN W Q, et al. Selective flotation of scheelite from calcite using xanthan gum as depressant [J]. Minerals Engineering, 2019, 138: 14-23.

相似文献/References:

[1]刘少文*,蒙君荣,陈文,等.颗粒尺寸与药剂性质对胶磷矿浮选过程的影响[J].武汉工程大学学报,2014,(02):25.[doi:103969/jissn16742869201402006]
 LIU Shao wen,MENG Jun rong,CHEN Wen,et al.Effects of particle size and reagents properties on flotation of collophanite[J].Journal of Wuhan Institute of Technology,2014,(06):25.[doi:103969/jissn16742869201402006]

备注/Memo

备注/Memo:
收稿日期:2025-03-18
基金项目:国家自然科学基金(52204277,52374273);湖北省自然科学基金创新群体项目(2023AFA044)
作者简介:张臻悦,博士,教授。Email:zyzxmu@wit.edu.cn
*通信作者:郭文达,博士,副教授。Email:gedaya123@163.com
更新日期/Last Update: 2026-01-05