[1] MCKAY A. Pathogens in a warming world[J]. Nature Ecology & Evolution,2023,7(1):2.
[2] SHEN X Q, ZHANG Y Y, MAO Q J, et al. Peptide-polymer conjugates: a promising therapeutic solution for drug-resistant bacteria [J]. International Journal of Polymer Science, 2022, 2022(1): 7610951.
[3] HU Y, MATSUI Y, W RILEY L. Risk factors for fecal carriage of drug-resistant Escherichia coli: a systematic review and meta-analysis [J]. Antimicrobial Resistance and Infection Control, 2020, 9(1): 31.
[4] JAHANTIGH H R, FAEZI S, HABIBI M, et al. The candidate antigens to achieving an effective vaccine against staphylococcus aureus [J]. Vaccines, 2022, 10(2): 199.
[5] QIAN F Y, CHEN M P, ZHOU C G, et al. The antibacterial and hydrophobic cotton fabrics constructed by multifunctional polysiloxane and TiO2 nanoparticles [J]. Fibers and Polymers, 2023, 24(2): 779-787.
[6] 孙宇君, 吕中. 季铵盐类聚合物增强纳米抗菌材料性能的研究进展[J]. 武汉工程大学学报, 2021, 43(1): 12-20.
[7] 陈嵘, 荣凯峰, 吕中, 等. 纳米银的制备及其生物活性研究进展[J]. 武汉工程大学学报, 2010, 32(11): 1-7, 14.
[8] YU Z C, LIU J R, HE H L, et al. Green synthesis of silver nanoparticles with black rice (Oryza sativa L.) extract endowing carboxymethyl chitosan modified cotton with high anti-microbial and durable properties [J]. Cellulose, 2021, 28(3): 1827-1842.
[9] 夏伟康, 金竹, 周昌林, 等. 光敏剂在光动力治疗中的应用研究进展[J]. 武汉工程大学学报, 2021, 43(2): 131-138.
[10] JIANG S, CUI C, BAI W H, et al. Shape-controlled silver nanoplates colored fabric with tunable colors, photothermal antibacterial and colorimetric detection of hydrogen sulfide [J]. Journal of Colloid and Interface Science, 2022, 626: 1051-1061.
[11] NIE X L, WU S L, HUANG F L, et al. Smart textiles with self-disinfection and photothermochromic effects [J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2245-2255.
[12] LI N, HU X, SUI X B, et al. Infrared light detection technology based on organics [J]. ACS Applied Electronic Materials, 2023, 5(1): 21-33.
[13] ZHENG X H, ZHANG Y, WANG Z Q, et al. Highly effective antibacterial zeolitic imidazolate framework-67/alginate fibers [J]. Nanotechnology, 2020, 31(37): 375707.
[14] QIAN L W, LEI D, DUAN X, et al. Design and preparation of metal-organic framework papers with enhanced mechanical properties and good antibacterial capacity [J]. Carbohydrate Polymers, 2018, 192: 44-51.
[15] EMAM H E, DARWESH O M, ABDELHAMEED R M. Protective cotton textiles via amalgamation of cross-linked zeolitic imidazole frameworks [J]. Industrial & Engineering Chemistry Research, 2020, 59(23): 10931-10944.
[16] WANG X G, LIU C, MENG D, et al. Surface integra-tion of polyelectrolyte and zeolitic imidazolate framework-67 for multifunctional poly (lactic acid) non-woven fabrics [J]. Applied Surface Science, 2021, 569: 151039.
[17] YANG Y Y, ZHANG S Y, HUANG W, et al. Multifunctional cotton textiles design using in situ generating zeolitic imidazolate framework-67 (ZIF-67) for effective UV resistance, antibacterial activity, and self-cleaning [J]. Cellulose, 2021, 28(9): 5923-5935.
[18] KOUSER S, HEZAM A, NAGESH KHADRI M J, et al. A review on zeolite imidazole frameworks: synthesis, properties, and applications [J]. Journal of Porous Materials, 2022, 29(3): 663-681.
[19] ZHANG L, YUAN G J, BAI J L, et al. MoP@C supported on absorbent cotton as a highly efficient catalyst towards hydrodechlorination reaction [J]. Zeitschrift Für Anorganische und Allgemeine Chemie, 2020, 646(19): 1611-1617.