[1] 谢树成, 赖旭龙, 黄咸雨, 等. 分子地层学的原理, 方法及应用实例 [J]. 地层学杂志, 2007, 31(3): 209-221.
[2] WEIJERS J W H, SCHOUTEN S, DONKER J C, et al. Environmental controls on bacterial tetraether membrane lipid distribution in soils [J]. Geochimica Et Cosmochimica Acta, 2007, 71: 703-713.
[3] BAUERSACHS T, SCHUBERT C J, MAYR C, et al. Branched GDGT-based temperature calibrations from Central European lakes [J]. Science of the Total Environment, 2024, 906:167724.
[4] CHEN Y F, ZHENG F F, CHEN S Z, et al. Branched GDGT production at elevated temperatures in anaerobic soil microcosm incubations [J]. Organic Geochemistry, 2018, 117: 12-21.
[5] LI F Y ,ZHENG F F, WANG Y L, et al. Thermoplasmatales and methanogens: potential association with the Crenarchaeol production in Chinese Soils [J]. Frontiers in Microbiology, 2017, 8: 1200.
[6] DANG X Y, YANG H, NAAFS B D A, et al. Evidence of moisture control on the methylation of branched glycerol dialkyl glycerol tetraethers in semi-arid and arid soils [J]. Geochimica Et Cosmochimica Acta,2016,189:24-36.
[7] DE JONGE C, GUO J J, HALLBERG P, et al. The impact of soil chemistry, moisture and temperature on branched and isoprenoid GDGTs in soils: a study using six globally distributed elevation transects [J]. Organic Geochemistry, 2024, 187: 104706.
[8] DE JONGE C, HOPMANS E C, ZELL C I, et al. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: Implications for palaeoclimate reconstruction [J]. Geochimica Et Cosmochimica Acta,2014,141:97-112.
[9] BLUM L N, COLMAN D R, ELOE-FADROSH E A, et al. Distribution and abundance of tetraether lipid cyclization genes in terrestrial hot springs reflect pH [J]. Environmental Microbiology,2023,25(9): 1644-1658.
[10] PETERSE F, VAN DER MEER J, SCHOUTEN S, et al. Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils [J]. Geochimica Et Cosmochimica Acta, 2012, 96: 215-229.
[11] SCHOUTEN S, HOPMANS E C, DAMSTé J S S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review[J]. Organic Geochemistry, 2013, 54: 19-61.
[12] LEININGER S, URICH T, SCHLOTER M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils [J]. Nature, 2006,442: 806-809.
[13] WEIJERS J W H, SCHOUTEN S, HOPMANS E C, et al. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits [J]. Environmental Microbiology,2006(4):648-657.
[14] COLCORD D E, CADIEUX S B, BRASSELL S C, et al. Assessment of branched GDGTs as temperature proxies in sedimentary records from several small lakes in southwestern Greenland [J]. Organic Geochemistry, 2015, 82: 33-41.
[15] WEIJERS J W H, PANOTO E, VAN BLEIJSWIJK J, et al. Constraints on the biological source(s) of the orphan branched tetraether membrane lipids [J]. Geomicrobiology Journal, 2009, 26(6): 402-414.
[16] DAMSTé J S S, RIJPSTRA W I C, HOPMANS E C, et al. 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of subdivisions 1 and 3 [J]. Applied and Environ-mental Microbiology,2011,77(12):4147-4154.
[17] DAMSTé J S S, RIJPSTRA W I C, FOESEL B U, et al. An overview of the occurrence of ether- and ester-linked-diabolic acid membrane lipids in microbial cultures of the Acidobacteria: implications for brGDGT paleoproxies for temperature and pH [J]. Organic Geochemistry, 2018, 124: 63-76.
[18] CHEN Y F, ZHENG F F, YANG H, et al. The production of diverse brGDGTs by an Acidobacterium providing a physiological basis for paleoclimate proxies [J]. Geochimica Et Cosmochimica Acta, 2022, 337: 155-165.
[19] HALAMKA T A, RABERG J H, MCFARLIN J M, et al. Production of diverse brGDGTs by Acidobacterium Solibacter usitatus in response to temperature, pH, and O2 provides a culturing perspective on brGDGT proxies and biosynthesis [J]. Geobiology, 2022, 21: 102-118.
[20] YAN X, OHARA T, AKIMOTO H. Development of region‐specific emission factors and estimation of methane emission from rice fields in the East, Southeast and South Asian countries [J]. Global Change Biology, 2003, 9: 237-254.
[21] ZHANG W, YU Y Q, HUANG Y, et al. Modeling methane emissions from irrigated rice cultivation in China from 1960 to 2050 [J]. Global Change Biology, 2011, 17(12): 3511-3523.
[22] ISHII S, IKEDA S, MINAMISAWA K, et al. Nitrogen cycling in rice paddy environments: past achievements and future challenges [J]. Microbes and Environments, 2011, 26(4): 282-292.
[23] AYARI A, YANG H, XIE S C. Flooding impact on the distribution of microbial tetraether lipids in paddy rice soil in China [J]. Frontiers of Earth Science, 2013, 7(3): 384-394.
[24] YUAN X, WANG Y M, JI P L, et al. A global transition to flash droughts under climate change [J]. Science, 2023, 380(6641): 187-191.
[25] ZHENG F F, CHEN Y F, TANG X T, et al. Changes in archaeal ether lipid composition in response to agriculture alternation in ancient and modern paddy soils [J]. Organic Geochemistry,2019,138:103912.
[26] YANG H, PANCOST R D, DANG X Y, et al. Correlations between microbial tetraether lipids and environmental variables in Chinese soils: optimizing the paleo-reconstructions in semi-arid and arid regions [J]. Geochimica Et Cosmochimica Acta, 2014, 126: 49-69.
[27] HUGUET C, HOPMANS E C, FEBO-AYALA W, et al. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids[J]. Organic Geochemistry,2006,37:1036-1041.
[28] YANG H, Lü X X, DING W H, et al. The 6-methyl branched tetraethers significantly affect the performance of the methylation index (MBT′) in soils from an altitudinal transect at Mount Shennongjia [J]. Organic Geochemistry,2015,82: 42-53.
[29] KUSCH S, WINTERFELD M, MOLLENHAUER G, et al. Glycerol dialkyl glycerol tetraethers (GDGTs) in high latitude Siberian permafrost: diversity, environmental controls, and implications for proxy applications [J]. Organic Geochemistry, 2019, 136: 103888.
[30] QIN W, CARLSON L T, ARMBRUST E V, et al. Confounding effects of oxygen and temperature on the TEX86 signature of marine Thaumarchaeota [J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(35): 10979-10984.
[31] 曹冬冬, 樊昊心. 土壤碳氮磷硫循环对温度的响应 [J]. 武汉工程大学学报, 2023, 45(4): 423-428.
[32] 王肖已, 姚槐应, 李杏. 草地土壤生态系统对氮沉降响应的研究进展 [J]. 武汉工程大学学报, 2020, 42(3):276-281.
[33] SCHOUTEN S, HOPMANS E C, SCHEFU? E, et al. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? [J]. Earth and Planetary Science Letters, 2002, 204: 265-274.
[34] HOPMANS E C, WEIJERS J W H, SCHEFU? E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids [J]. Earth and Planetary Science Letters, 2004, 224: 107-116.
[35] XIE S C, PANCOST R D, CHEN L, et al. Microbial lipid records of highly alkaline deposits and enhanced aridity associated with significant uplift of the Tibetan Plateau in the Late Miocene [J]. Geology, 2012, 40(4): 291-294.
[36] MUELLER-NIGGEMANN C, UTAMI S R, MARXEN A, et al. Distribution of tetraether lipids in agricultural soils - differentiation between paddy and upland management [J]. Biogeosciences, 2016, 13(5): 1647-1666.
[37] YANG H, DING W H, WANG J X, et al. Soil pH impact on microbial tetraether lipids and terrestrial input index (BIT) in China [J]. Science China-Earth Sciences, 2012, 55(2): 236-245.
[38] WANG H, LIU W, ZHANG C, et al. Branched and isoprenoid tetraether (BIT) index traces water content along two marsh-soil transects surrounding Lake Qinghai: implications for paleo-humidity variation[J]. Organic Geochemistry,2013,59:75-81.
[39] THAUER R K, KASTER A K, SEEDORF H, et al. Methanogenic archaea: ecologically relevant differences in energy conservation [J]. Nature Reviews Microbiology, 2008, 6(8): 579-591.
[40] NAEHER S, PETERSE F, SMITTENBERG R H, et al. Sources of glycerol dialkyl glycerol tetraethers (GDGTs) in catchment soils, water column and sediments of Lake Rotsee (Switzerland):implications for the application of GDGT-based proxies for lakes [J]. Organic Geochemistry, 2014, 66: 164-173.
[41] BLAGA C I, REICHART G J, HEIRI O, et al. Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north-south transect [J]. Journal of Paleolimnology, 2009, 41(3): 523-540.