|本期目录/Table of Contents|

[1]冯雪晴,谭严,贾明敏,等. 中国水稻土壤古菌膜脂iGDGTs的分布特征及其环境意义 [J].武汉工程大学学报,2025,47(06):634-640,705.[doi:10.19843/j.cnki.CN42-1779/TQ.202404015]
 FENG Xueqing,TAN Yan,JIA Mingmin,et al.Distribution and environmental significance of archaea-derived iGDGTs in paddy soils across China [J].Journal of Wuhan Institute of Technology,2025,47(06):634-640,705.[doi:10.19843/j.cnki.CN42-1779/TQ.202404015]
点击复制

中国水稻土壤古菌膜脂iGDGTs的分布特征及其环境意义

(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
47
期数:
2025年06期
页码:
634-640,705
栏目:
现代大化工
出版日期:
2025-12-31

文章信息/Info

Title:
Distribution and environmental significance of archaea-derived iGDGTs in paddy soils across China
文章编号:
1674 - 2869(2025)06 - 0634 - 07
作者:
冯雪晴谭严贾明敏冯俊俊薛建涛*
武汉工程大学绿色化工过程教育部重点实验室,环境生态与生物工程学院,湖北 武汉 430205
Author(s):
FENG Xueqing TAN Yan JIA Mingmin FENG Junjun XUE Jiantao*
Key Laboratory of Green Chemical Process, Ministry of Education, School of Environmental Ecology and Bioengineering,Wuhan Institute of Technology, Wuhan 430205, China

关键词:
水稻土壤微生物膜脂iGDGTs分布特征环境因子
Keywords:
paddy soil microbial membrane lipids iGDGTs distribution pattern environmental factors
分类号:
Q931
DOI:
10.19843/j.cnki.CN42-1779/TQ.202404015
文献标志码:
A
摘要:
微生物膜脂甘油二烷基甘油四醚化合物(GDGTs)对环境变化高度敏感,能够有效记录环境因子的波动,因而被广泛应用为全球变化研究的代用指标。基于这一特性,本研究系统调查了中国36个不同区域水稻土壤中的古菌来源 iGDGTs 的组成特征。结果表明:水稻土壤中 iGDGTs 的分布在区域与全国尺度上均存在显著差异。其中,GDGT-2 与 GDGT-3 与环境因子的相关性较强,iGDGTs 的相对丰度主要受有机碳(TOC)、总氮(TN)含量以及土壤 pH 的共同调控。在淹水条件下,iGDGTs 的生物来源受到干扰,伴随土壤 pH 降低,厌氧环境中温室气体的大量释放导致土壤 C、N 含量下降。这一过程表现为 GDGT-2 与 GDGT-3 含量升高,进而引起 TEX86 值增加。同时,奇古菌门的氨氧化古菌受到抑制,由于Crenarchaeol 的含量减少导致 BIT 值升高。而其他指标,如 Ri/b 与 GDGT-0/Crenarchaeol,则主要受土壤含水量的影响。
Abstract:
Glycerol dialkyl glycerol tetraethers (GDGTs), microbial membrane lipids, are sensitive and effective proxies for environmental changes and have been increasingly used in global changes research. In this study, we investigated the composition of iGDGTs (isoprenoidal GDGTs) derived from archaea in paddy soils collected from 36 different regions across China. The results revealed variations in iGDGT distributions at both regional and national scales. Notably, GDGT-2 and GDGT-3 showed significant correlations with environmental factors, and the relative abundance of iGDGTs was primarily controlled by total organic carbon (TOC), total nitrogen (TN) content, and soil pH. Under flooded conditions, the biological sources of iGDGTs were altered. The concomitant decrease in soil pH and the production of greenhouse gases under anaerobic conditions led to decreased soil C and N contents. These changes were manifested as increased abundances of GDGT-2 and GDGT-3, resulting in a higher TEX86 index. Additionally, ammonia-oxidizing archaea (AOA) were inhibited, which reduced the production and accumulation of Crenarchaeol and consequently increased the BIT index. In contrast, other indices, such as Ri/b and GDGT-0/Crenarchaeol, were predominantly influenced by soil water content.

参考文献/References:

[1] 谢树成, 赖旭龙, 黄咸雨, 等. 分子地层学的原理, 方法及应用实例 [J]. 地层学杂志, 2007, 31(3): 209-221.
[2] WEIJERS J W H, SCHOUTEN S, DONKER J C, et al. Environmental controls on bacterial tetraether membrane lipid distribution in soils [J]. Geochimica Et Cosmochimica Acta, 2007, 71: 703-713.
[3] BAUERSACHS T, SCHUBERT C J, MAYR C, et al. Branched GDGT-based temperature calibrations from Central European lakes [J]. Science of the Total Environment, 2024, 906:167724.
[4] CHEN Y F, ZHENG F F, CHEN S Z, et al. Branched GDGT production at elevated temperatures in anaerobic soil microcosm incubations [J]. Organic Geochemistry, 2018, 117: 12-21.
[5] LI F Y ,ZHENG F F, WANG Y L, et al. Thermoplasmatales and methanogens: potential association with the Crenarchaeol production in Chinese Soils [J]. Frontiers in Microbiology, 2017, 8: 1200.
[6] DANG X Y, YANG H, NAAFS B D A, et al. Evidence of moisture control on the methylation of branched glycerol dialkyl glycerol tetraethers in semi-arid and arid soils [J]. Geochimica Et Cosmochimica Acta,2016,189:24-36.
[7] DE JONGE C, GUO J J, HALLBERG P, et al. The impact of soil chemistry, moisture and temperature on branched and isoprenoid GDGTs in soils: a study using six globally distributed elevation transects [J]. Organic Geochemistry, 2024, 187: 104706.
[8] DE JONGE C, HOPMANS E C, ZELL C I, et al. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: Implications for palaeoclimate reconstruction [J]. Geochimica Et Cosmochimica Acta,2014,141:97-112.
[9] BLUM L N, COLMAN D R, ELOE-FADROSH E A, et al. Distribution and abundance of tetraether lipid cyclization genes in terrestrial hot springs reflect pH [J]. Environmental Microbiology,2023,25(9): 1644-1658.
[10] PETERSE F, VAN DER MEER J, SCHOUTEN S, et al. Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils [J]. Geochimica Et Cosmochimica Acta, 2012, 96: 215-229.
[11] SCHOUTEN S, HOPMANS E C, DAMSTé J S S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review[J]. Organic Geochemistry, 2013, 54: 19-61.
[12] LEININGER S, URICH T, SCHLOTER M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils [J]. Nature, 2006,442: 806-809.
[13] WEIJERS J W H, SCHOUTEN S, HOPMANS E C, et al. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits [J]. Environmental Microbiology,2006(4):648-657.
[14] COLCORD D E, CADIEUX S B, BRASSELL S C, et al. Assessment of branched GDGTs as temperature proxies in sedimentary records from several small lakes in southwestern Greenland [J]. Organic Geochemistry, 2015, 82: 33-41.
[15] WEIJERS J W H, PANOTO E, VAN BLEIJSWIJK J, et al. Constraints on the biological source(s) of the orphan branched tetraether membrane lipids [J]. Geomicrobiology Journal, 2009, 26(6): 402-414.
[16] DAMSTé J S S, RIJPSTRA W I C, HOPMANS E C, et al. 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of subdivisions 1 and 3 [J]. Applied and Environ-mental Microbiology,2011,77(12):4147-4154.
[17] DAMSTé J S S, RIJPSTRA W I C, FOESEL B U, et al. An overview of the occurrence of ether- and ester-linked-diabolic acid membrane lipids in microbial cultures of the Acidobacteria: implications for brGDGT paleoproxies for temperature and pH [J]. Organic Geochemistry, 2018, 124: 63-76.
[18] CHEN Y F, ZHENG F F, YANG H, et al. The production of diverse brGDGTs by an Acidobacterium providing a physiological basis for paleoclimate proxies [J]. Geochimica Et Cosmochimica Acta, 2022, 337: 155-165.
[19] HALAMKA T A, RABERG J H, MCFARLIN J M, et al. Production of diverse brGDGTs by Acidobacterium Solibacter usitatus in response to temperature, pH, and O2 provides a culturing perspective on brGDGT proxies and biosynthesis [J]. Geobiology, 2022, 21: 102-118.
[20] YAN X, OHARA T, AKIMOTO H. Development of region‐specific emission factors and estimation of methane emission from rice fields in the East, Southeast and South Asian countries [J]. Global Change Biology, 2003, 9: 237-254.
[21] ZHANG W, YU Y Q, HUANG Y, et al. Modeling methane emissions from irrigated rice cultivation in China from 1960 to 2050 [J]. Global Change Biology, 2011, 17(12): 3511-3523.
[22] ISHII S, IKEDA S, MINAMISAWA K, et al. Nitrogen cycling in rice paddy environments: past achievements and future challenges [J]. Microbes and Environments, 2011, 26(4): 282-292.
[23] AYARI A, YANG H, XIE S C. Flooding impact on the distribution of microbial tetraether lipids in paddy rice soil in China [J]. Frontiers of Earth Science, 2013, 7(3): 384-394.
[24] YUAN X, WANG Y M, JI P L, et al. A global transition to flash droughts under climate change [J]. Science, 2023, 380(6641): 187-191.
[25] ZHENG F F, CHEN Y F, TANG X T, et al. Changes in archaeal ether lipid composition in response to agriculture alternation in ancient and modern paddy soils [J]. Organic Geochemistry,2019,138:103912.
[26] YANG H, PANCOST R D, DANG X Y, et al. Correlations between microbial tetraether lipids and environmental variables in Chinese soils: optimizing the paleo-reconstructions in semi-arid and arid regions [J]. Geochimica Et Cosmochimica Acta, 2014, 126: 49-69.
[27] HUGUET C, HOPMANS E C, FEBO-AYALA W, et al. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids[J]. Organic Geochemistry,2006,37:1036-1041.
[28] YANG H, Lü X X, DING W H, et al. The 6-methyl branched tetraethers significantly affect the performance of the methylation index (MBT′) in soils from an altitudinal transect at Mount Shennongjia [J]. Organic Geochemistry,2015,82: 42-53.
[29] KUSCH S, WINTERFELD M, MOLLENHAUER G, et al. Glycerol dialkyl glycerol tetraethers (GDGTs) in high latitude Siberian permafrost: diversity, environmental controls, and implications for proxy applications [J]. Organic Geochemistry, 2019, 136: 103888.
[30] QIN W, CARLSON L T, ARMBRUST E V, et al. Confounding effects of oxygen and temperature on the TEX86 signature of marine Thaumarchaeota [J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(35): 10979-10984.
[31] 曹冬冬, 樊昊心. 土壤碳氮磷硫循环对温度的响应 [J]. 武汉工程大学学报, 2023, 45(4): 423-428.
[32] 王肖已, 姚槐应, 李杏. 草地土壤生态系统对氮沉降响应的研究进展 [J]. 武汉工程大学学报, 2020, 42(3):276-281.
[33] SCHOUTEN S, HOPMANS E C, SCHEFU? E, et al. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? [J]. Earth and Planetary Science Letters, 2002, 204: 265-274.
[34] HOPMANS E C, WEIJERS J W H, SCHEFU? E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids [J]. Earth and Planetary Science Letters, 2004, 224: 107-116.
[35] XIE S C, PANCOST R D, CHEN L, et al. Microbial lipid records of highly alkaline deposits and enhanced aridity associated with significant uplift of the Tibetan Plateau in the Late Miocene [J]. Geology, 2012, 40(4): 291-294.
[36] MUELLER-NIGGEMANN C, UTAMI S R, MARXEN A, et al. Distribution of tetraether lipids in agricultural soils - differentiation between paddy and upland management [J]. Biogeosciences, 2016, 13(5): 1647-1666.
[37] YANG H, DING W H, WANG J X, et al. Soil pH impact on microbial tetraether lipids and terrestrial input index (BIT) in China [J]. Science China-Earth Sciences, 2012, 55(2): 236-245.
[38] WANG H, LIU W, ZHANG C, et al. Branched and isoprenoid tetraether (BIT) index traces water content along two marsh-soil transects surrounding Lake Qinghai: implications for paleo-humidity variation[J]. Organic Geochemistry,2013,59:75-81.
[39] THAUER R K, KASTER A K, SEEDORF H, et al. Methanogenic archaea: ecologically relevant differences in energy conservation [J]. Nature Reviews Microbiology, 2008, 6(8): 579-591.
[40] NAEHER S, PETERSE F, SMITTENBERG R H, et al. Sources of glycerol dialkyl glycerol tetraethers (GDGTs) in catchment soils, water column and sediments of Lake Rotsee (Switzerland):implications for the application of GDGT-based proxies for lakes [J]. Organic Geochemistry, 2014, 66: 164-173.
[41] BLAGA C I, REICHART G J, HEIRI O, et al. Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north-south transect [J]. Journal of Paleolimnology, 2009, 41(3): 523-540.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-04-10
基金项目:国家自然科学基金(41903066);流域关键带演化湖北省重点实验室开放基金(CZE2022F05)
作者简介:冯雪晴,硕士研究生。Email:mewdodu@gmail.com
*通信作者:薛建涛,博士,副教授。Email:xuejiantaocug@163.com

更新日期/Last Update: 2026-01-06